TransE:Translating Embedding多元关系数据嵌入(知识图谱嵌入)2013 NIPS

在这里插入图片描述
论文链接:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.6132&rep=rep1&type=pdf
代码链接:https://github.com/Anery/transE

导读

表示学习旨在学习一系列低维稠密向量来表征语义信息,而知识表示学习是面向知识库中实体和关系的表示学习。当今大规模知识库(或称知识图谱)的构建为许多NLP任务提供了底层支持,但由于其规模庞大且不完备,如何高效存储和补全知识库成为了一项非常重要的任务,这就依托于知识表示学习。

transE算法就是一个非常经典的知识表示学习,用分布式表示(distributed representation)来描述知识库中的三元组。想象一下,这类表示法既避免了庞大的树结构构造,又能通过简单的数学计算获取语义信息,因此成为了当前表示学习的根基。

1、TransE算法原理

我们知道知识图谱中的事实是用三元组 ( h , l , t ) (h,l,t) (h,l,t) 表示的,那么如何用低维稠密向量来表示它们,才能得到这种依赖关系呢?transE算法的思想非常简单,它受word2vec平移不变性的启发,希望 h + l ≈ t h+l≈t h+lt(此为归纳偏差?)。

光有这一个约束可不够。想让 h + l ≈ t h+l≈t h+lt,如何设置损失函数是个关键。我们发现表示学习都没有明显的监督信号,也就是不会明确告诉模型你学到的表示正不正确,那么想要快速收敛就得引入“相对”概念,即相对负例来说,正例的打分要更高,方法学名“negative sampling”。损失函数设计如下: L = ∑ ( h , l , t ) ∈ S ∑ ( h ′ , l , t ′ ) ∈ S ( h ,

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值