TransD:通过动态映射矩阵嵌入(知识图谱嵌入)ACL 2015

在这里插入图片描述
论文链接:http://pdfs.semanticscholar.org/a4ad/33855655986d9edcea300db7849d4b8498a0.pdf
代码链接:https://github.com/mrlyk423/relation_extraction
论文来源:ACL 2015

导读

知识图谱作为人工智能应用的重要资源,表示学习对知识图谱的完善和应用至关重要。先前提出的TransE、TransH、TransR模型对表示学习提升不少,表示学习对关系抽取、三元组分类以及链接预测等方面具有作用。TransD模型改进TransR,认为不同的实体应映射到不同的语义空间中,且减少了计算量。

1、引言

知识图谱对于大量的人工智能应用来说是非常有用的资源,但是其距离完善还有一段距离。先前的工作例如TransE、TransH和TransR,认为头实体到尾实体可以被认为是一种翻译,且CTransR获得最优效果。本文,我们提出一个细粒度模型,叫TransD,且相比之前的模型有所提高。在TransD中,我们使用两个向量来表征两个实体(头实体和尾实体)。首先第一个向量表征实体关系,另一个被用来构建动态映射矩阵。相比TransR/CTransR模型,TransD不仅考虑到关系的多样性,也考虑到实体的多样性。TransD有较少的参数,且TransD参数较少,没有矩阵向量乘法运算,可以应用于大型图数据。实验中,我们在两个标准任务上评估了我们的模型。评估的结果表明我们的方法比最优模型更好。

像WordNet、FreeBase、YaGo一样的知识图谱在许多AI应用,例如关系抽取、问答等。这些通常包含大量的结构化数据,形如(head entity,relation,tail entity)即 ( h , r , t ) (h,r,t) (h,r,t) 。TransR模型包含如下几个缺点:
(1)对于特定的关系 r r r ,所有实体共享同一个语义空间 M r M_r Mr ,但头实体和尾实体通常不是一个类型的实体,因此实体需要映射到不同的语义空间中;
(2)实体和关系的投影操作是一个连续迭代的操作,仅依靠关系进行推理是不足的;投影矩阵 M r \mathbf{M_{r}} Mr只取决于 r r r , 但应该由实体和关系共同决定。
(3)矩阵向量带来大量的参数运算量。每个 r r r 对应一个投影矩阵, 关系多时参数过于庞大。

2、TransD模型详解

本文提出一种全新的方法TransD来为图谱进行建模。如图所示
在这里插入图片描述
我们定义了两个向量,第一个向量表征实体或关系的语义,另一个向量(投影向量)表示如何将实体从实体空间映射到关系空间中,因此每个实体对有唯一的矩阵。 M r h , M r t \mathbf{M}_{rh},\mathbf{M}_{rt} Mrh,Mrt 分别是实体 h , t h,t h,t 的映射矩阵, h i p , t i p ( i = 1 , 2 , 3 ) \mathbf{h}_{ip}, \mathbf{t}_{ip}(i=1,2,3) hip,tip(i=1,2,3)及关系 r p \mathbf{r}_p rp为投影向量, h i ⊥ , t i ⊥ \mathbf{h}_{i\perp},\mathbf{t}_{i\perp} hi,ti 分别为头尾实体的投影向量。因此有:
M r h = r p h p T + I m × n \mathbf{M}_{rh}=\mathbf{r}_p\mathbf{h}_{p}^{\mathbf{T}}+\mathbf{I}^{m\times n} Mrh=rphpT+Im×n M r t = r p t p T + I m × n \mathbf{M}_{rt}=\mathbf{r}_p\mathbf{t}_{p}^{\mathbf{T}}+\mathbf{I}^{m\times n} Mrt=rptpT+Im×n h ⊥ = M r h h \mathbf{h}_{\perp}=\mathbf{M}_{rh}\mathbf{h} h=Mrhh t ⊥ = M r t t \mathbf{t}_{\perp}=\mathbf{M}_{rt}\mathbf{t} t=Mrtt f r ( h , t ) = − ∣ ∣ h ⊥ + r − t ⊥ ∣ ∣ 2 2 f_r(\mathbf{h},\mathbf{{t})=-||\mathbf{h}_{\perp}+\mathbf{r}-\mathbf{t}_{\perp}}||_2^2 fr(h,t)=h+rt22其中 I m × n \mathbf{I}^{m \times n} Im×n表示单位矩阵。分析上式,实体投影矩阵主要与当前实体对中的关系和实体有关,相比TransR模型,每个实体所在的投影空间不相同。损失函数如下所示:

L = ∑ ( h , r , t ) ∈ S ∑ ( h ′ , r , t ′ ) ∈ S ′ [ γ + f r ( h , t ) − f r ( h ′ , t ′ ) ] + L=\sum_{(h,r,t)\in S}\sum_{(h',r,t')\in S'}[\gamma + f_r(h,t)-f_r(h',t')]_+ L=(h,r,t)S(h,r,t)S[γ+fr(h,t)fr(h,t)]+负采样的策略与TransH和TransR相同。

3、TransD和其他Trans模型的联系

3.1、TransE

m = n m=n m=n h p \mathbf{h}_{p} hp, r p \mathbf{r}_{p} rp, t p \mathbf{t}_{p} tp设置为零向量时, 可知TransE是TransD的一个特例。

3.2、TransH

TransH模型中 h ⊥ = h − w r h w r t ⊥ = t − w r t w r \begin{aligned} \mathbf{h}_{\perp} &=\mathbf{h}-\mathbf{w}_{r} \mathbf{h} \mathbf{w}_{r} \\ \mathbf{t}_{\perp} &=\mathbf{t}-\mathbf{w}_{r} \mathbf{t}\mathbf{w}_{r} \end{aligned} ht=hwrhwr=twrtwr
TransD模型中 h ⊥ = M r h h = h + h p ⊤ h r p t ⊥ = M r t t = t + t p ⊤ t r p \begin{aligned} \mathbf{h}_{\perp} &=\mathbf{M}_{r h} \mathbf{h}=\mathbf{h}+\mathbf{h}_{p}^{\top} \mathbf{h r}_{p} \\ \mathbf{t}_{\perp} &=\mathbf{M}_{r t} \mathbf{t}=\mathbf{t}+\mathbf{t}_{p}^{\top} \mathbf{t r}_{p} \end{aligned} ht=Mrhh=h+hphrp=Mrtt=t+tptrp由此可看到, TransH中投影的方向只取决于 r r r, 而在TransD中, 由 e e e r r r 共同决定.

3.3、TransR

TransR为每个 r r r 都分配了一个矩阵, 而TransD为每个实体和关系分配一个向量, 以向量的乘积代替矩阵, 有效减少了模型的参数量。

4、实验

实验中用到的数据集包括四个,分别如图所示:
在这里插入图片描述
实验包括两个部分:三元组分类和链接预测。

4.1、三元组分类

任务给定三元组,判定当前三元组是否正确。实验结果如图所示:
在这里插入图片描述
作者在实验过程中关注了一些具有更低accuracy的关系。
在这里插入图片描述
分析:

  1. 对于 s i m i l a r _ t o similar\_to similar_to关系主要因为训练数据不充足,只占了1.5%。
  2. 对于最右侧的图说明了bern方法的效果要好于unif

4.2、链接预测

给定实体和关系,预测另一个实体。实验结果如图所示:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值