MIT OpenCourse 18.06 Linear Algebra 3

乘法和逆矩阵

1 矩阵乘法

 
在第一节笔记的最后已经讲了两种矩阵的乘法
这一节会进行一些其他方法的补充
 

1.1 法一:常规方法

 
取矩阵
 

A m n × B n p = C m p A_{mn}\qquad\times \qquad B_{np}\qquad=\qquad C_{mp} Amn×Bnp=Cmp

 
其中
矩阵A为m行n列
矩阵B为n行p列
矩阵C为m行p列
(ABC的行数与列数必须满足某种关系 否则无法进行矩阵乘法)
矩阵C中第i行j列的元素
记作
 

c i j c_{ij} cij

 
等于矩阵A的第i行点乘矩阵B中第j列
 

c i j = a i 1 × b 1 j + a i 2 × b 2 j + . . . + a i n × b n j c_{ij}=a_{i1}\times b_{1j}+a_{i2}\times b_{2j}+...+a_{in}\times b_{nj} cij=ai1×b1j+ai2×b2j+...+ain×bnj

 
这是最传统的做法
基本大家都这么干
但是要想了解矩阵的乘法
还是有必要看看其他几种方法的
 

1.2 法二:列方法

 
还是取那几个矩阵
 

A m n × B n p = C m p [ ] m × n × [ ] n × p = [ ] m × p A_{mn}\qquad\times \qquad B_{np}\qquad=\qquad C_{mp}\\ \quad \\ \quad \\ \left[ \begin{array}{ccc} & & \\ & &\\ & & \end{array} \right]_{m\times n}\times\quad \left[ \begin{array}{c|cc} & & \\ & &\\ & & \end{array} \right]_{n\times p}=\quad \left[ \begin{array}{c|cc} & & \\ & &\\ & & \end{array} \right]_{m\times p} Amn×Bnp=Cmpm×n×n×p=m×p

 
其中矩阵C的第j列都可视作矩阵A乘以矩阵B的第j列
也就是
C中每一列都是A中所有列的线性组合
组合的方式参照B中对应的列向量
 

A m n × B j = C j [ ] m × n × [ ] j = [ ] j A_{mn}\qquad\times \qquad B_{j}\qquad=\qquad C_{j}\\ \quad \\ \quad \\ \left[ \begin{array}{ccc} & & \\ & &\\ & & \end{array} \right]_{m\times n}\times\quad \left[ \begin{array}{c} \\ \\ \\ \end{array} \right]_{j}\quad=\quad \left[ \begin{array}{c} \\ \\ \\ \end{array} \right]_{j} Amn×Bj=Cjm×n×j=j

 

1.3 法三:行方法

 
依然取那几个矩阵
 

A m n × B n p = C m p [ ] m × n × [ ] n × p = [ ] m × p A_{mn}\qquad\times \qquad B_{np}\qquad=\qquad C_{mp}\\ \quad \\ \quad \\ \left[ \begin{array}{ccc} & & \\\hline & &\\ & & \end{array} \right]_{m\times n}\times\quad \left[ \begin{array}{ccc} & & \\ & &\\ & & \end{array} \right]_{n\times p}=\quad \left[ \begin{array}{ccc} & & \\\hline & &\\ & & \end{array} \right]_{m\times p} Amn×Bnp=Cmpm×n×n×p=m×p

 
这个和刚才考虑整列的方法一毛一样!
矩阵C的第i行都可视作矩阵B乘以矩阵A的第i行
也就是
C中每一行都是B中所有行的线性组合
组合的方式参照A中对应的行向量
 

A i × B n p = C i [ ] i × [ ] n × p = [ ] i A_{i}\qquad\times \qquad B_{np}\qquad=\qquad C_{i}\\ \quad \\ \quad \\ \left[ \begin{array}{ccc} & & \\ \end{array} \right]_{i}\quad\times\quad \left[ \begin{array}{ccc} & & \\ & &\\ & & \end{array} \right]_{n\times p}=\quad \left[ \begin{array}{ccc} & & \\ \end{array} \right]_{i} Ai×Bnp=Ci[]i×n×p=[]i

 

1.4 法四:列乘以行

 
取两个矩阵A和B
 

[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 ⋯ a m n ] m × n [ b 11 b 12 ⋯ b 1 p b 21 b 22 ⋯ b 2 p ⋯ ⋯ ⋯ ⋯ b n 1 b n 2 ⋯ b n p ] n × p \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{bmatrix}_{m\times n} \qquad \begin{bmatrix} b_{11}&b_{12}&\cdots&b_{1p}\\ b_{21}&b_{22}&\cdots&b_{2p}\\ \cdots&\cdots&\cdots&\cdots\\ b_{n1}&b_{n2}&\cdots&b_{np} \end{bmatrix}_{n\times p} a11a21am1a12a22am2a1na2namnm×nb11b21bn1b12b22bn2b1pb2pbnpn×p

 
则由法一可以知道
A的一行乘以B的一列
得到的是一个元素
其本质是
 

[ a m 1 a m 2 ⋯ a m n ] 1 × n × [ b 1 p b 2 p ⋯ b n p ] n × 1 = [ a m 1 × b 1 p + a m 2 × b 2 p + . . . + a m n × b n p ] \begin{bmatrix} a_{m1}&a_{m2}&\cdots&a_{mn} \end{bmatrix}_{1\times n} \times \quad \begin{bmatrix} b_{1p}\\ b_{2p}\\ \cdots\\ b_{np} \end{bmatrix}_{n\times 1}= \begin{bmatrix} a_{m1}\times b_{1p}+a_{m2}\times b_{2p}+...+a_{mn}\times b_{np} \end{bmatrix} [am1am2amn]1×n×b1pb2pbnpn×1=[am1×b1p+am2×b2p+...+amn×bnp]

 
那么
如果我们拿A的一列乘以B的一行
会得到什么呢?
 

[ a 1 n a 2 n ⋯ a m n ] m × 1 × [ b n 1 b n 2 ⋯ b n p ] 1 × p = ? \begin{bmatrix} a_{1n}\\ a_{2n}\\ \cdots\\ a_{mn} \end{bmatrix}_{m\times 1} \times \quad \begin{bmatrix} b_{n1}&b_{n2}&\cdots&b_{np} \end{bmatrix}_{1\times p}=\quad ? a1na2namnm×1×[bn1bn2bnp]1×p=?

 
会得到一个矩阵!!!
 

⋯ = [ a 1 n × b n 1 a 1 n × b n 2 ⋯ a 1 n × b n p a 2 n × b n 1 a 2 n × b n 2 ⋯ a 2 n × b n p ⋯ a m n × b n 1 a m n × b n 2 ⋯ a m n × b n p ] m × p \cdots \quad=\quad \begin{bmatrix} a_{1n}\times b_{n1} & a_{1n}\times b_{n2} & \cdots & a_{1n}\times b_{np}\\ a_{2n}\times b_{n1} & a_{2n}\times b_{n2} & \cdots & a_{2n}\times b_{np}\\ \cdots\\ a_{mn}\times b_{n1} & a_{mn}\times b_{n2} & \cdots & a_{mn}\times b_{np} \end{bmatrix}_{m\times p} =a1n×bn1a2n×bn1amn×bn1a1n×bn2a2n×bn2amn×bn2a1n×bnpa2n×bnpamn×bnpm×p

 
这个矩阵的每一行都是
 

[ b n 1 b n 2 ⋯ b n p ] 1 × p \begin{bmatrix} b_{n1}&b_{n2}&\cdots&b_{np} \end{bmatrix}_{1\times p} [bn1bn2bnp]1×p

 
的倍数
而每一列都是
 

[ a 1 n a 2 n ⋯ a m n ] m × 1 \begin{bmatrix} a_{1n}\\ a_{2n}\\ \cdots\\ a_{mn} \end{bmatrix}_{m\times 1} a1na2namnm×1

 
的倍数
 
由此
我们可以根据这个性质进行矩阵的乘法运算
取两个矩阵为例
 

[ 2 7 3 8 4 9 ] × [ 1 6 0 0 ] = ? \begin{bmatrix} 2&7\\ 3&8\\ 4&9 \end{bmatrix} \quad \times \quad \begin{bmatrix} 1&6\\ 0&0 \end{bmatrix} \quad=\quad? 234789×[1060]=?

 
我们不走寻常路!
这次我们用列乘以行的方式来计算!
这俩矩阵相乘 其实就等于
第一个矩阵的第一列乘以第二个矩阵的第一行
加上
第一个矩阵的第二列乘以第二个矩阵的第二行
也就是
 

[ 2 7 3 8 4 9 ] × [ 1 6 0 0 ] = [ 2 3 4 ] × [ 1 6 ] + [ 7 8 9 ] × [ 0 0 ] = [ 2 12 3 18 4 24 ] + [ 0 0 0 0 0 0 ] = [ 2 12 3 18 4 24 ] \begin{bmatrix} 2&7\\ 3&8\\ 4&9 \end{bmatrix} \times \begin{bmatrix} 1&6\\ 0&0 \end{bmatrix}= \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}\times \begin{bmatrix} 1&6 \end{bmatrix}+ \begin{bmatrix} 7\\ 8\\ 9 \end{bmatrix}\times \begin{bmatrix} 0&0 \end{bmatrix}\\ \quad\\ =\begin{bmatrix} 2&12\\ 3&18\\ 4&24 \end{bmatrix}+ \begin{bmatrix} 0&0\\ 0&0\\ 0&0 \end{bmatrix}= \begin{bmatrix} 2&12\\ 3&18\\ 4&24 \end{bmatrix} 234789×[1060]=234×[16]+789×[00]=234121824+000000=234121824

 

1.5 法五:分块矩阵

 
我们可以把矩阵的各个元素分成块
然后把这些块视作矩阵的元素
再进行乘法运算
比如我们可以取两个矩阵进行乘法运算
 

[ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] × [ b 11 b 12 b 13 b 14 b 21 b 22 b 23 b 24 b 31 b 32 b 33 b 34 b 41 b 42 b 43 b 44 ] \left[ \begin{array}{cccc} a_{11}&a_{12}&a_{13}&a_{14}\\ a_{21}&a_{22}&a_{23}&a_{24}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ a_{41}&a_{42}&a_{43}&a_{44} \end{array} \right]\times \left[ \begin{array}{cccc} b_{11}&b_{12}&b_{13}&b_{14}\\ b_{21}&b_{22}&b_{23}&b_{24}\\ b_{31}&b_{32}&b_{33}&b_{34}\\ b_{41}&b_{42}&b_{43}&b_{44} \end{array} \right] a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44×b11b21b31b41b12b22b32b42b13b23b33b43b14b24b34b44

 
这么多元素要算的话肯定运算量很大
所以我们可以把这些元素分成一块一块的小矩阵
将这些小矩阵视作元素
再进行运算
就会相对简洁一些
就像这样
 

[ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] × [ b 11 b 12 b 13 b 14 b 21 b 22 b 23 b 24 b 31 b 32 b 33 b 34 b 41 b 42 b 43 b 44 ] = [ A 1 A 2 A 3 A 4 ] × [ B 1 B 2 B 3 B 4 ] \left[ \begin{array}{cc|cc} a_{11}&a_{12}&a_{13}&a_{14}\\ a_{21}&a_{22}&a_{23}&a_{24}\\\hline a_{31}&a_{32}&a_{33}&a_{34}\\ a_{41}&a_{42}&a_{43}&a_{44} \end{array} \right]\times \left[ \begin{array}{cc|cc} b_{11}&b_{12}&b_{13}&b_{14}\\ b_{21}&b_{22}&b_{23}&b_{24}\\\hline b_{31}&b_{32}&b_{33}&b_{34}\\ b_{41}&b_{42}&b_{43}&b_{44} \end{array} \right]\\ \quad \\ =\left[ \begin{array}{c|c} A1&A2\\\hline A3&A4 \end{array} \right]\times \left[ \begin{array}{c|c} B1&B2\\\hline B3&B4 \end{array} \right] a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44×b11b21b31b41b12b22b32b42b13b23b33b43b14b24b34b44=[A1A3A2A4]×[B1B3B2B4]

 

2 矩阵的逆(仅限方阵)

 
如果一矩阵A可逆
则A与自身逆矩阵的乘积为单位矩阵I
 

A × A − 1 = I A\times A^{-1}=I A×A1=I

 
但是不像矩阵的乘法
对于方阵的逆
左乘和右乘的结果是一样的
(我依然不会证明但它确实是这样)
 

A × A − 1 = A − 1 × A = I A\times A^{-1}=A^{-1}\times A=I A×A1=A1×A=I

 
注意
此定理仅适用于方阵
矩阵的左逆和右逆是有区别的
 
存在逆矩阵的方阵被称为是 可逆的
或是 非奇异的
而不能存在逆矩阵的矩阵则被称为不可逆的
或是 奇异的
例如
 

A = [ 1 3 2 6 ] A=\begin{bmatrix} 1&3\\ 2&6 \end{bmatrix} A=[1236]

 
这个矩阵不可逆
目前我们有两种解释思路
 

2.1 判断是否存在逆矩阵

2.1.1 思路一
 
根据刚才提到的逆矩阵性质
 

A × A − 1 = A − 1 × A = I A\times A^{-1}=A^{-1}\times A=I A×A1=A1×A=I

 
若A可逆,则一定存在一个矩阵
使得A与这个矩阵的乘积为单位矩阵I
 

[ ? ? ? ? ] × [ 1 3 2 6 ] = [ 1 0 0 1 ] \begin{bmatrix} ?& ?\\ ?& ? \end{bmatrix}\times \begin{bmatrix} 1& 3\\ 2& 6 \end{bmatrix}= \begin{bmatrix} 1& 0\\ 0& 1 \end{bmatrix} [????]×[1236]=[1001]

 
 

[ 1 3 2 6 ] × [ ? ? ? ? ] = [ 1 0 0 1 ] \begin{bmatrix} 1& 3\\ 2& 6 \end{bmatrix}\times \begin{bmatrix} ?& ?\\ ?& ? \end{bmatrix}= \begin{bmatrix} 1& 0\\ 0& 1 \end{bmatrix} [1236]×[????]=[1001]

 
根据本节1.2和1.3中的思路
最终的单位矩阵中的每一行或每一列都是
 

[ 1 3 2 6 ] \begin{bmatrix} 1& 3\\ 2& 6 \end{bmatrix} [1236]

 
的所有行或所有列的线性组合
也就是说
必有x1 x2 x3 x4 y1 y2 y3 y4满足
 

x 1 × [ 1 3 ] + y 1 × [ 2 6 ] = [ 1 0 ] x 2 × [ 1 3 ] + y 2 × [ 2 6 ] = [ 0 1 ] x 3 × [ 1 2 ] + y 3 × [ 3 6 ] = [ 1 0 ] x 4 × [ 1 2 ] + y 4 × [ 3 6 ] = [ 0 1 ] x_1\times\begin{bmatrix} 1& 3\\ \end{bmatrix}+ y_1\times\begin{bmatrix} 2& 6\\ \end{bmatrix}= \begin{bmatrix} 1& 0 \end{bmatrix}\\ \quad\\ x_2\times\begin{bmatrix} 1& 3\\ \end{bmatrix}+ y_2\times\begin{bmatrix} 2& 6\\ \end{bmatrix}= \begin{bmatrix} 0& 1 \end{bmatrix}\\ \quad\\ x_3\times\begin{bmatrix} 1\\ 2 \end{bmatrix}+ y_3\times\begin{bmatrix} 3\\ 6 \end{bmatrix}= \begin{bmatrix} 1\\ 0 \end{bmatrix}\\ \quad\\ x_4\times\begin{bmatrix} 1\\ 2 \end{bmatrix}+ y_4\times\begin{bmatrix} 3\\ 6 \end{bmatrix}= \begin{bmatrix} 0\\ 1 \end{bmatrix}\\ \quad\\ x1×[13]+y1×[26]=[10]x2×[13]+y2×[26]=[01]x3×[12]+y3×[36]=[10]x4×[12]+y4×[36]=[01]

 
但是显然
根本找不到能够满足这个要求的x1 x2 x3 x4 y1 y2 y3 y4
也就是说
无论是行向量还是列向量
都无法凑出
 

[ 1 0 ] [ 0 1 ] [ 1 0 ] [ 0 1 ] \begin{bmatrix} 1&0 \end{bmatrix} \begin{bmatrix} 0&1 \end{bmatrix}\\ \quad\\ \begin{bmatrix} 1\\ 0 \end{bmatrix} \begin{bmatrix} 0\\ 1 \end{bmatrix} [10][01][10][01]

 
为什么呢?
仔细观察我们用的这些行向量或者列向量
 

[ 1 3 ] [ 2 6 ] [ 1 2 ] [ 3 6 ] \begin{bmatrix} 1& 3\\ \end{bmatrix} \begin{bmatrix} 2& 6\\ \end{bmatrix}\\ \quad\\ \begin{bmatrix} 1\\ 2 \end{bmatrix} \begin{bmatrix} 3\\ 6 \end{bmatrix} [13][26][12][36]

 
[1 3]和[2 6]是二倍的关系
[1 2]和[3 6]也是二倍的关系
这要放在二维平面上
两个向量是共线的!
回顾第一节的思考
只有在两个向量不共线的情况下
它们的全部线性组合才能覆盖整个二维平面
而现在它们这两个向量共线
所以不论怎么线性组合
所得到的结果都只能在这条直线上
显然
[1 0]或者[0 1]都不在它们所在的直线上
因此
刚才提到的这个矩阵
 

A = [ 1 3 2 6 ] A=\begin{bmatrix} 1& 3\\ 2& 6 \end{bmatrix} A=[1236]

 
与任何矩阵相乘
或者乘以任何矩阵
都无法变成单位矩阵
 

[ 1 0 0 1 ] \begin{bmatrix} 1& 0\\ 0& 1 \end{bmatrix} [1001]

 
也就是说没有矩阵满足
 

A × B = [ 1 0 0 1 ] 或 B × A = [ 1 0 0 1 ] A\times B =\begin{bmatrix} 1& 0\\ 0& 1 \end{bmatrix}\quad或\quad B\times A =\begin{bmatrix} 1& 0\\ 0& 1 \end{bmatrix} A×B=[1001]B×A=[1001]

 
由此可得A不存在逆矩阵
也就是A不可逆
 
2.1.2 判断是否存在逆矩阵思路二
 
同样对于刚才那个矩阵
 

A = [ 1 3 2 6 ] A=\begin{bmatrix} 1&3\\ 2&6 \end{bmatrix} A=[1236]

 
若存在非零向量x使得
 

A × x = 0 A\times x = 0 A×x=0

 
则称A不可逆
 
这是为什么呢?
我们先来此时假设A可逆
那么此时A同时满足
 

{ A × x = 0 ① A × A − 1 = A − 1 × A = I ② \begin{cases} A\times x = 0\quad①\\ A\times A^{-1}=A^{-1}\times A=I \quad②\end{cases} {A×x=0A×A1=A1×A=I

 
把②代入①即可得到
 

A − 1 × A × x = A − 1 × 0 ↓ I × x = 0 ↓ x = 0 A^{-1}\times A\times x=A^{-1}\times 0\\ \stackrel{}{\downarrow}\\ I\times x= 0\\ \stackrel{}{\downarrow}\\ x=0 A1×A×x=A1×0I×x=0x=0

 
但是x是个非零的向量!
所以对于A可逆的假设是错误的!
 
所以
若存在非零向量x使得
 

A × x = 0 A\times x = 0 A×x=0

 
则方阵A不可逆
 

2.2 高斯-约旦(Gauss-Jordan)消元法

 
通过刚才的知识
我们已经知道了该咋判断一个矩阵是否可逆
那么
当我们知道一个矩阵可逆了之后
应该怎么求它的逆矩阵呢?
上节课的最后提到了一种方法
如果忘记了可以回去看一下
但是现在我们要学习一种更具普适性的方法
比如现在我给出了一个可逆的矩阵
(可以用2.1的知识自己验证一下它是不是真的可逆)
 

A = [ 1 3 2 7 ] A=\begin{bmatrix} 1&3\\ 2&7 \end{bmatrix} A=[1237]

 
那么A的逆矩阵就满足
 

A × A − 1 = I [ 1 3 2 7 ] × [ a b c d ] = [ 1 0 0 1 ] A\quad\times\quad A^{-1}\quad=\quad I\\ \quad\\ \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\times \begin{bmatrix} a&b\\ c&d \end{bmatrix}= \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} A×A1=I[1237]×[acbd]=[1001]

 
根据2.1中的思想
把逆矩阵按行或按列展开即可得到单位矩阵
 

[ 1 3 2 7 ] × [ a b ] = [ 1 0 ] [ 1 3 2 7 ] × [ c d ] = [ 0 1 ] 或 [ 1 3 2 7 ] × [ a c ] = [ 1 0 ] [ 1 3 2 7 ] × [ b d ] = [ 0 1 ] \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\times \begin{bmatrix} a&b \end{bmatrix}= \begin{bmatrix} 1&0 \end{bmatrix}\\ \quad\\ \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\times \begin{bmatrix} c&d \end{bmatrix}= \begin{bmatrix} 0&1 \end{bmatrix}\\ \quad\\ 或\\ \quad\\ \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\times \begin{bmatrix} a\\ c \end{bmatrix}= \begin{bmatrix} 1\\ 0 \end{bmatrix}\\ \quad\\ \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\times \begin{bmatrix} b\\ d \end{bmatrix}= \begin{bmatrix} 0\\ 1 \end{bmatrix} [1237]×[ab]=[10][1237]×[cd]=[01][1237]×[ac]=[10][1237]×[bd]=[01]

 
具体往后该咋操作应该都会
这样就转换成了解方程组的问题
我就不展开写了
但在这里我们要引入另一种思想:
高斯-约旦思想(同时处理两个方程组)
 
具体表现为:
构造该矩阵与单位矩阵组成的增广矩阵
 

[ A I ] \left [ \begin{array}{c:c} \begin{matrix} A \end{matrix}& \begin{matrix} I \end{matrix} \end{array} \right ]\\ \quad [AI]

也就是

[ 1 3 2 7 1 0 0 1 ] \left [ \begin{array}{c:c} \begin{matrix} 1&3\\ 2&7 \end{matrix}& \begin{matrix} 1&0\\ 0&1 \end{matrix} \end{array} \right ] [12371001]

 
先对这个增广矩阵进行消元得到左侧的上三角矩阵U
 

[ 1 3 2 7 1 0 0 1 ] ⟶ r o w 2 − 2 × r o w 1 [ 1 3 0 1 1 0 − 2 1 ] \left [ \begin{array}{c:c} \begin{matrix} 1&3\\ 2&7 \end{matrix}& \begin{matrix} 1&0\\ 0&1 \end{matrix} \end{array} \right ]\stackrel{row2-2\times row1}{\longrightarrow} \left [ \begin{array}{c:c} \begin{matrix} 1&3\\ 0&1 \end{matrix}& \begin{matrix} 1&0\\ -2&1 \end{matrix} \end{array} \right ] [12371001]row22×row1[10311201]

 
然后继续向上消元得到左侧的单位矩阵I
 

[ 1 3 0 1 1 0 − 2 1 ] ⟶ r o w 1 − 3 × r o w 2 [ 1 0 0 1 7 − 3 − 2 1 ] \left [ \begin{array}{c:c} \begin{matrix} 1&3\\ 0&1 \end{matrix}& \begin{matrix} 1&0\\ -2&1 \end{matrix} \end{array} \right ]\stackrel{row1-3\times row2}{\longrightarrow} \left [ \begin{array}{c:c} \begin{matrix} 1&0\\ 0&1 \end{matrix}& \begin{matrix} 7&-3\\ -2&1 \end{matrix} \end{array} \right ] [10311201]row13×row2[10017231]

 
此时增广矩阵右侧的矩阵即为A的逆矩阵
那么为什么呢???
为什么它这样弄完之后
右边就变成了逆矩阵呢???
我来告诉你为什么!
你想啊
这个增广矩阵左边是A
右边是I
也就是
 

[ A I ] \left [ \begin{array}{c:c} \begin{matrix} A \end{matrix}& \begin{matrix} I \end{matrix} \end{array} \right ]\\ [AI]

 
然后它这两个矩阵就通过相同的行变换变成了
 

[ I A − 1 ] \left [ \begin{array}{c:c} \begin{matrix} I \end{matrix}& \begin{matrix} A^{-1} \end{matrix} \end{array} \right ]\\ [IA1]

 
这是咋变的呢
这不就是
 

[ A − 1 × A A − 1 × I ] = [ I A − 1 ] \left [ \begin{array}{c:c} \begin{matrix} A^{-1}\times A \end{matrix}& \begin{matrix} A^{-1}\times I \end{matrix} \end{array} \right ]= \left [ \begin{array}{c:c} \begin{matrix} I \end{matrix}& \begin{matrix} A^{-1} \end{matrix} \end{array} \right ]\\ [A1×AA1×I]=[IA1]

 
(矩阵左乘的矩阵可视作行变换矩阵 参见上一节课的3.2)
这样我们就会了一种相对常用的求逆矩阵的方法了!
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值