💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
水下机器人-机械手系统(Underwater vehicle-manipulator systems, UVMS)可以完成除观测之外的水下采样、抓取、操作等任务,在海洋科学考察、海洋工程等领域得到广泛应用。通过对近年来国内外UVMS的研究现状进行综述,介绍了不同的UVMS本体结构与机械手构型,总结了UVMS的运动学、动力学和水动力学的建模方法,分析了人机交互式遥控操作控制方式,针对UVMS的自主控制中的运动规划、位置与轨迹跟踪、独立与协调控制、运动补偿控制、力/位置混合控制、视觉伺服控制等问题做了分类阐述。
该项目体现UVDMS(水下机器人双机械手系统)上的运动学、动力学和控制模拟器。采用DH法建立运动学模型,并使用牛顿-欧拉法建立动力学模型。该项目为UVDMS的水下抓取操作提供了一个演示。
1. 系统架构与运动学建模
1.1 水下机器人本体结构
- 流线型设计:采用仿生水母结构(主驱动机构+多杆推进机构+空间转向机构),实现高效推进与灵活转向。
- 自由度配置:六推进器“X字型”布局(水平2个+垂直4个),支持进退、潜浮、平移、旋转、横滚五自由度运动,提升敏捷性。
1.2 双机械手系统设计
-
构型选择:
- 双臂回转式:两机械手绕中心轴同步回转,适用于高效协同任务(如刀库取刀与主轴送刀并行)。
- 类人双臂式:大臂+小臂+手部结构(各7自由度),模仿人类双臂协调特性,支持复杂操作(如打磨、抓取)。
-
关键参数(典型值):
参数 关节1 关节2 臂长(m) 1.0 2.0 质量(kg) 1.0 1.0 摩擦系数(N·m·s/rad) 0.3 0.3
1.3 运动学建模
- D-H算法:建立各关节坐标系,求解末端执行器位姿矩阵。
- 协同约束方程:定义双臂闭链运动约束,确保末端执行器同步运动:
2. 水下环境动力学建模
2.1 流体干扰模型
- Morison方程:计算水阻力 FdFd 与附加质量力 FaFa:
- 力矩影响:流体阻力矩占比可达基关节驱动力矩的 8.69%,不可忽略。
2.2 完整动力学方程
采用牛顿-欧拉迭代法构建含流体项的动力学模型:
3. 控制策略设计
3.1 单机械手控制
方法 | 优势 | 局限性 | 适用场景 |
---|---|---|---|
自适应神经网络滑模控制 | 补偿模型误差,抗水流扰动 | 计算复杂度高 | 强非线性海流环境 |
模糊PID | 无需精确模型,鲁棒性强 | 稳态误差较大 | 时变参数系统 |
解耦加速度控制 | 线性化系统,简化跟踪 | 依赖动力学模型精度 | 轨迹跟踪任务 |
3.2 双机械手协同控制
- 主从架构:一臂主动规划轨迹,另一臂跟随并维持相对位姿。
- 阻抗控制:调节力-位置动态关系,实现柔顺操作(如装配):
- 自适应模糊滑模控制:结合时间延时估计(TDE)简化模型,模糊逻辑补偿扰动,提升协同精度。
4. 仿真工具链与验证
4.1 多软件协同仿真流程
工具 | 功能 | 交互方式 |
---|---|---|
MATLAB/Simulink | 控制器设计、轨迹生成 | 调用CFD数据,集成控制律 |
ANSYS Fluent | 流体参数计算(Cd,CmCd,Cm) | UDP传输水动力数据 |
ADAMS | 多体动力学仿真 | 联合仿真接口 |
4.2 典型仿真案例
- 轨迹跟踪验证(双关节机械臂):
- 条件:均匀海流 vc=0.5m/svc=0.5m/s,期望轨迹为正弦曲线。
- 结果:滑模控制比PD控制位置误差降低 62%,响应速度提升 40%。
- 协同抓取任务(类人双臂):
- 控制策略:自适应模糊滑模阻抗控制。
- 性能:末端定位精度 <2mm,力控制误差 <5%。
5. 前沿趋势与挑战
-
环境适应性提升:
- CPG(中枢模式生成器) :模仿生物节律运动(如水蛇机器人3D机动),增强非结构化环境适应性。
- 强化学习:在线优化控制参数,适应动态海流。
-
硬件-控制集成:
- 弹性关节建模:补偿关节变形导致的末端偏差(N=7N=7 关节递归动力学模型)。
- 软体机械手:Mori方程描述液-翼相互作用,优化软体头部推力模型。
-
实时仿真瓶颈:
- Kernel模式优化:通过Simulink实时目标文件(
sldrt.tlc
)加速仿真。 - 模型降阶:TDE(时间延时估计)简化计算,满足毫秒级控制周期。
- Kernel模式优化:通过Simulink实时目标文件(
结论:水下机器人双机械手系统的动态建模需紧密结合流体动力学与多体约束,控制策略需平衡模型依赖性与环境适应性。协同仿真工具链(MATLAB+Fluent+ADAMS)和智能控制方法(自适应滑模/阻抗控制)是提升系统精度的核心方向。未来研究需进一步探索神经-模糊网络的在线学习能力,以应对深海水流的强不确定性。
📚2 运行结果
🎉3 参考文献
华中科技大学船舶与海洋工程学院,先进海洋机器人系统实验室
[1]常宗瑜,张扬,郑方圆,郑中强,王吉亮.水下机器人-机械手系统研究进展:结构、建模与控制[J].机械工程学报,2020,56(19):53-69.