Physics | Electricity and Magnetism graph | 磁场计公式推导

注:本文为 “电磁学公式” 相关文章合辑

如有内容异常,请看原文。

不定期修订。


Electricity and Magnetism
Applications
Bioelectricity
Electronics
Electric_Circuits
Circuit_Elements
Electric_Charge
Magnetic_Field
Voltage Law
Current Law
Ohm's Law
DC Circuits
AC Circuits
Household Wiring
Resistor
Capacitor
Inductor
Electric Power
Coulomb's Law
Gauss's Law
EMF
Voltage
Electric Current
Ampere's Law
Biot - Savart Law
Faraday's Law
Lorentz Force Law
Maxwell's Equations
EM Waves

基本磁场计算公式的简单推导

卓晴 已于 2022-06-19 18:03:21 修改

对于导线周围的磁场分布,可以从比奥 - 萨伐尔(Biot - Savart)定理出发,推导出任意电流导线或者导体周围的磁感应强度。讨论这个问题主要是为了能够对 电磁炉中的螺旋线圈.周围的磁场进行数值分析研究。

00 基础理论

1. 毕奥 - 萨伐尔定律

毕奥 - 萨伐尔定理 (Biot - Savart Law):电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 在空间某点 P P P 处产生的磁感应强度 d B ⃗ \mathrm{d}\vec{B} dB 的大小与电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 的大小成正比,与电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 所在处到 P P P 点的位置矢量和电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 之间的夹角的正弦成正比,而与电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl P P P 点的距离的平方成反比。

d B ⃗ = μ 0 4 π ⋅ I d l ⃗ × r ⃗ r 3 = μ 0 4 π ⋅ I d l ⋅ sin ⁡ θ r 2 \mathrm{d}\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}\vec{l} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}l \cdot \sin\theta}{r^2} dB =4πμ0r3Idl ×r =4πμ0r2Idlsinθ

B ⃗ = ∫ L μ 0 4 π ⋅ I d l × e ⃗ r r 2 \vec{B} = \int_{L} \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}l \times \vec{e}_r}{r^2} B =L4πμ0r2Idl×e r

其中 I I I 是源电流, L L L 是积分路径。 d l ⃗ \mathrm{d}\vec{l} dl 是源电流微分线元素, e ⃗ r \vec{e}_r e r 是电流元到待求场点的单位向量。

μ 0 = 4 π × 1 0 − 7   Tm/A \mu_0 = 4\pi \times 10^{-7} \, \text{Tm/A} μ0=4π×107Tm/A 是真空磁导率值。

毕奥 - 萨伐尔定律

01 基本磁场推导

2. 直线导线所产生的磁场

下面是非常常见的磁场计算公式推导。如果在一段有限长直线电流旁边 P P P 点,距离直线电流直线距离为 a a a,计算 P P P 点处的磁感应场强 B B B

(1) 推导方法 1

建立如下的坐标系 O x y Oxy Oxy。那么直线上的电流元就是 I d y Idy Idy。根据 Biot - Savart 定理, P P P 点的磁场为:

在这里插入图片描述

▲ 有限长直线旁边的磁场

B P = μ 0 I 4 π ∫ c b sin ⁡ θ y 2 + a 2 d y = μ 0 I 4 π ∫ c b a ( y 2 + a 2 ) 3 / 2 d y B_P = \frac{\mu_0 I}{4\pi} \int_c^b \frac{\sin \theta}{y^2 + a^2} \mathrm{d}y = \frac{\mu_0 I}{4\pi} \int_c^b \frac{a}{(y^2 + a^2)^{3/2}} \mathrm{d}y BP=4πμ0Icby2+a2sinθdy=4πμ0Icb(y2+a2)3/2ady

其中,对于:

∫ c b d y ( y 2 + a 2 ) 3 / 2 = y a 3 1 + y 2 a 2 ∣ c b \int_c^b \frac{\mathrm{d}y}{(y^2 + a^2)^{3/2}} = \frac{y}{a^3 \sqrt{1 + \frac{y^2}{a^2}}} \Big|_c^b cb(y2+a2)3/2dy=a31+a2y2 y cb

代入 b b b c c c 的值可以得到:

B P = μ 0 I 4 π a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) B_P = \frac{\mu_0 I}{4\pi a} \left( \cos \theta_1 - \cos \theta_2 \right) BP=4πaμ0I(cosθ1cosθ2)

(2) 推导方法 2

根据:

y = − a ⋅ cos ⁡ θ sin ⁡ θ y = -a \cdot \frac{\cos \theta}{\sin \theta} y=asinθcosθ

那么对于上式两边同时进行微分:

d y = d ( − a ⋅ cos ⁡ θ sin ⁡ θ ) = a sin ⁡ 2 θ d θ \mathrm{d}y = \mathrm{d}\left( -a \cdot \frac{\cos \theta}{\sin \theta} \right) = \frac{a}{\sin^2 \theta} \mathrm{d}\theta dy=d(asinθcosθ)=sin2θadθ

这其中应用到:

d ( cos ⁡ θ sin ⁡ θ ) = − ( 1 + cos ⁡ 2 θ sin ⁡ 2 θ ) = − 1 sin ⁡ 2 θ \mathrm{d}\left( \frac{\cos \theta}{\sin \theta} \right) = - \left( 1 + \frac{\cos^2 \theta}{\sin^2 \theta} \right) = -\frac{1}{\sin^2 \theta} d(sinθcosθ)=(1+sin2θcos2θ)=sin2θ1

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY                     -- by Dr. ZhuoQing 2020-09-25
#
# Note:
#============================================================
from headm import *
from sympy import symbols,Integral, oo, exp, integrate
from sympy import print_latex, sin, cos, sqrt, diff
x, y, a= symbols('x, y, a')
ixs = diff(cos(x)/sin(x),x)
#------------------------------------------------------------
print_latex(ixs)
tspec('msg2latex')
#------------------------------------------------------------
#        END OF FILE : TEST1.PY
#============================================================

那么,由 Biot - Savart 定理:

d y ⃗ × r ⃗ r 3 = d y ⋅ sin ⁡ θ r 2 = a sin ⁡ 2 θ d θ ⋅ sin ⁡ θ ⋅ sin ⁡ θ a = sin ⁡ θ d θ a \frac{\mathrm{d}\vec{y} \times \vec{r}}{r^3} = \frac{\mathrm{d}y \cdot \sin \theta}{r^2} = \frac{a}{\sin^2 \theta} \mathrm{d}\theta \cdot \sin \theta \cdot \frac{\sin \theta}{a} = \frac{\sin \theta \mathrm{d}\theta}{a} r3dy ×r =r2dysinθ=sin2θadθsinθasinθ=asinθdθ

最终积分式变为:

μ 0 4 π ∫ c b d y ⃗ × r ⃗ r 3 = μ 0 I 4 π a ∫ θ 1 θ 2 sin ⁡ θ d θ \frac{\mu_0}{4\pi} \int_c^b \frac{\mathrm{d}\vec{y} \times \vec{r}}{r^3} = \frac{\mu_0 I}{4\pi a} \int_{\theta_1}^{\theta_2} \sin \theta \mathrm{d}\theta 4πμ0cbr3dy ×r =4πaμ0Iθ1θ2sinθdθ

最终可以得到与上式相同的表达式。

3. 圆环的磁场

电流元可以表示为:

d l = R d θ \mathrm{d}l = R\mathrm{d}\theta dl=Rdθ

那么积分:

B 0 = μ 0 4 π ∫ 0 2 π I ⋅ R d θ ⋅ R R 3 = μ 0 I 2 R B_0 = \frac{\mu_0}{4\pi} \int_0^{2\pi} \frac{I \cdot R\mathrm{d}\theta \cdot R}{R^3} = \frac{\mu_0 I}{2R} B0=4πμ002πR3IRdθR=2Rμ0I

圆环磁场

02 结论

利用基本的 Biot - Savart 定理,可以得到基本的直线和圆环磁场强度的解析解。对于一些复杂的曲线的推导会非常复杂,具体的结果需要通过数值求解来完成。可以利用在 Laplace 数值逆运算的讨论 给出的一些 Python 语言实现的数值积分来完成求解。

比如利用下面的梯形数值积分来验证一下直线磁场计算数值解。

def trapz(f, a, b, N=50):
    x = linspace(a, b, N + 1)
    y = f(x)
    y_right = y[1:]
    y_left = y[:-1]
    dx = (b - a) / N
    T = dx / 2 * sum(y_right + y_left)
    return T

1. 对于直线磁场数值求解

假设具体的参数为:

a = 1 , θ 1 = π 4 , θ 2 = 2 π 3 a = 1, \quad \theta_1 = \frac{\pi}{4}, \quad \theta_2 = \frac{2\pi}{3} a=1,θ1=4π,θ2=32π

I = 1 , μ 0 = 4 π × 1 0 − 7 I = 1, \quad \mu_0 = 4\pi \times 10^{-7} I=1,μ0=4π×107

直接根据公式:

B = μ 0 I 4 π a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) B = \frac{\mu_0 I}{4\pi a} \left( \cos \theta_1 - \cos \theta_2 \right) B=4πaμ0I(cosθ1cosθ2)

可以得到:

B = 1.20711 × 1 0 − 7 B = 1.20711 \times 10^{-7} B=1.20711×107

利用数据进行求解:

c = − a ⋅ cot ⁡ ( π 4 ) = − 1 c = -a \cdot \cot\left( \frac{\pi}{4} \right) = -1 c=acot(4π)=1

b = − a ⋅ cot ⁡ ( 2 π 4 ) = 0.57735 b = -a \cdot \cot\left( \frac{2\pi}{4} \right) = 0.57735 b=acot(42π)=0.57735

B = μ 0 ⋅ I 4 π ∫ c b a ( y 2 + a 2 ) 3 / 2 d y B = \frac{\mu_0 \cdot I}{4\pi} \int_c^b \frac{a}{(y^2 + a^2)^{3/2}} \mathrm{d}y B=4πμ0Icb(y2+a2)3/2ady

经过数值积分结果为:

B = 1.207078 × 1 0 − 7 B = 1.207078 \times 10^{-7} B=1.207078×107

对比上述结果可以看到结果是非常接近的。


大学物理电磁学——毕奥·萨伐尔定律

soft word 于 2020-06-10 20:03:49 发布

毕奥·萨伐尔定律

公式汇总

一般公式:

d B = μ 0 4 π I d l ⃗ × r ⃗ r 3 = μ 0 4 π I d l sin ⁡ α r 2 \mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}l} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I\mathrm{d}l \sin \alpha}{r^2} dB=4πμ0r3Idl ×r =4πμ0r2Idlsinα

载流直导线的磁场:

B = μ 0 I 4 π a ( cos ⁡ α 1 − cos ⁡ α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1cosα2)

无限长载流直导线:

B = μ 0 I 2 π a B = \frac{\mu_0 I}{2\pi a} B=2πaμ0I

载流圆线圈轴上的磁场:

B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2

圆心处:

x = 0 , B 0 = μ 0 I 2 R x = 0, \quad B_0 = \frac{\mu_0 I}{2R} x=0,B0=2Rμ0I

通电螺线管:

B = μ 0 n I 2 ( x 2 x 2 2 + R 2 − x 1 x 1 2 + R 2 ) B = \frac{\mu_0 n I}{2} \left( \frac{x_2}{\sqrt{x_2^2 + R^2}} - \frac{x_1}{\sqrt{x_1^2 + R^2}} \right) B=2μ0nI(x22+R2 x2x12+R2 x1)

对于无限长的螺线管:

B = μ 0 n I B = \mu_0 n I B=μ0nI

1. 磁现象

  • 一切磁现象都源于电荷的运动。

  • 一切磁力本质上都是电荷之间的作用力。

一切磁现象都源于电荷运动,磁相互作用的本质就是运动电荷(电流)之间的运动。

2. 毕奥·萨伐尔定律

2.1 电流元

定义:

I d l ⃗ I \vec{\mathrm{d}l} Idl

大小为 I d l I\mathrm{d}l Idl,方向由线元所在处电流的流向来确定。

目的:用积分法来求出任意形状的磁场分布。

2.2 电流元的磁场

大小:

d B = μ 0 4 π I d l ⃗ × r ⃗ r 3 = μ 0 4 π I d l sin ⁡ α r 2 \mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}l} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I\mathrm{d}l \sin \alpha}{r^2} dB=4πμ0r3Idl ×r =4πμ0r2Idlsinα

真空磁导率:

μ 0 = 4 π × 1 0 − 7   N ⋅ A − 2 \mu_0 = 4\pi \times 10^{-7} \, \text{N} \cdot \text{A}^{-2} μ0=4π×107NA2

运用积分:

B ⃗ = ∫ d B ⃗ = ∫ μ 0 4 π I d l ⃗ × r ⃗ r 3 \vec{B} = \int \mathrm{d}\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}l} \times \vec{r}}{r^3} B =dB =4πμ0r3Idl ×r

解题步骤:

  1. 建立坐标系。

  2. 分割电流元。

  3. 确定电流元的磁场。

  4. 坐标分解求 d B x \mathrm{d}B_x dBx d B y \mathrm{d}B_y dBy d B z \mathrm{d}B_z dBz,然后统一积分变量求出 d B x \mathrm{d}B_x dBx d B y \mathrm{d}B_y dBy d B z \mathrm{d}B_z dBz

  5. B ⃗ = d B x i ⃗ + d B y j ⃗ + d B z k ⃗ \vec{B} = \mathrm{d}B_x \vec{i} + \mathrm{d}B_y \vec{j} + \mathrm{d}B_z \vec{k} B =dBxi +dByj +dBzk ,求总场。


毕奥·萨伐尔定律运用实例

载流直导线的磁场

B = μ 0 I 4 π a ( cos ⁡ α 1 − cos ⁡ α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1cosα2)

其中, a a a 是点到导线的垂直距离, α 1 \alpha_1 α1 是电流入端点与该点与待求点连线之间的夹角。

载流直导线的磁场

一般情况:

B = μ 0 I 4 π a ( cos ⁡ α 1 − cos ⁡ α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1cosα2)

无限长载流直导线:

α 1 = 0 , α 2 = π , B = μ 0 I 2 π a \alpha_1 = 0, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{2\pi a} α1=0,α2=π,B=2πaμ0I

半无限长载流直导线(点与其入端平齐):

α 1 = π 2 , α 2 = π , B = μ 0 I 4 π a \alpha_1 = \frac{\pi}{2}, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{4\pi a} α1=2π,α2=π,B=4πaμ0I

半无限长载流直导线:

α 1 = β , α 2 = π , B = μ 0 I 4 π a ( cos ⁡ β + 1 ) \alpha_1 = \beta, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{4\pi a} (\cos \beta + 1) α1=β,α2=π,B=4πaμ0I(cosβ+1)

载流导线延长线上任意一点的磁场:

B ⃗ = 0 \vec{B} = 0 B =0

载流圆线圈轴上的磁场

B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2

圆心处:

x = 0 , B 0 = μ 0 I 2 R x = 0, \quad B_0 = \frac{\mu_0 I}{2R} x=0,B0=2Rμ0I

如果是圆弧形的电流:

B 0 = μ 0 I 2 R θ 2 π B_0 = \frac{\mu_0 I}{2R} \frac{\theta}{2\pi} B0=2Rμ0I2πθ

载流密绕直螺线管轴上的磁场

载流密绕直螺线管轴上的磁场

B = μ 0 n I 2 ( x 2 x 2 2 + R 2 − x 1 x 1 2 + R 2 ) B = \frac{\mu_0 n I}{2} \left( \frac{x_2}{\sqrt{x_2^2 + R^2}} - \frac{x_1}{\sqrt{x_1^2 + R^2}} \right) B=2μ0nI(x22+R2 x2x12+R2 x1)

对于无限长的螺线管:

B = μ 0 n I B = \mu_0 n I B=μ0nI

运动电荷产生的磁场

运用公式:

B ⃗ = ∫ d B ⃗ = ∫ μ 0 4 π I d l ⃗ × r ⃗ r 3 \vec{B} = \int \mathrm{d}\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}l} \times \vec{r}}{r^3} B =dB =4πμ0r3Idl ×r

常见情况:

  1. 离散运动电荷已知速度,则对一个圆周进行积分:

I = q T I = \frac{q}{T} I=Tq

其中 T T T 是电荷绕一圈的周期。

离散运动电荷

− e -e e 的原因是, I I I 的方向与负电荷运动方向相反。

  1. 带电圆环已知每秒绕 N N N 转,与之前类似, T = 1 N T = \frac{1}{N} T=N1

3. 磁距

平面载流线圈的磁距:

p ⃗ m = I S ⃗ \vec{p}_m = I \vec{S} p m=IS

其中, S ⃗ \vec{S} S 的方向就是法向量的方向。

载流线圈轴线上距圆心很远的场可表示为:

B = μ 0 I R 2 2 x 3 = μ 0 I π R 2 2 π x 3 = μ 0 I S ⃗ 2 π x 3 = μ 0 p m 2 π x 3 B = \frac{\mu_0 I R^2}{2x^3} = \frac{\mu_0 I \pi R^2}{2\pi x^3} = \frac{\mu_0 I \vec{S}}{2\pi x^3} = \frac{\mu_0 p_m}{2\pi x^3} B=2x3μ0IR2=2πx3μ0IπR2=2πx3μ0IS =2πx3μ0pm

考虑方向:

B ⃗ = μ 0 p ⃗ m 2 π x 3 \vec{B} = \frac{\mu_0 \vec{p}_m}{2\pi x^3} B =2πx3μ0p m

当圆电流的半径很小或者讨论远离圆电流处的磁场分布时,把圆电流称作磁偶极子,产生的磁场称为磁偶极磁场。


大学物理之毕奥·萨伐尔定律推导

映之123 于 2022-02-13 12:11:22 发布

毕奥·萨伐尔定律

d B = μ 0 4 π I d l ⃗ × r ⃗ r 2 \mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}\vec{l} \times \vec{r}}{r^2} dB=4πμ0r2Idl ×r

其中, e ⃗ r \vec{e}_r e r 是从电流元指向参考点方向的单位矢量, μ 0 \mu_0 μ0 是真空磁导率。电流元产生的磁场的磁感应强度 d B \mathrm{d}B dB 垂直于 I d l ⃗ I \mathrm{d}\vec{l} Idl e ⃗ r \vec{e}_r e r 组成的平面,并满足右手螺旋定则。

电流元

定义:

I d ⃗ l I \vec{\mathrm{d}}l Id l

为电流元。大小为 I d l I \mathrm{d}l Idl d ⃗ l \vec{\mathrm{d}}l d l 的方向由线元所在处电流的流向来确定。

目的:用积分法来求出任意形状的磁场分布。

电流元的磁场

大小:

d B = μ 0 4 π I d ⃗ l × r ⃗ r 3 = μ 0 4 π I d l sin ⁡ θ r 2 \mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}}l \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}l \sin \theta}{r^2} dB=4πμ0r3Id l×r =4πμ0r2Idlsinθ

载流直导线的磁场

长为 l l l 的载流直导线,其中电流为 I I I,计算距离直导线为 r 0 r_0 r0 的点 P P P 的磁感应强度。

载流直导线的磁场

涉及到的数学公式

cot ⁡ θ = cos ⁡ θ sin ⁡ θ \cot \theta = \frac{\cos \theta}{\sin \theta} cotθ=sinθcosθ

( cot ⁡ θ ) ′ = ( cos ⁡ θ ) ′ ( sin ⁡ θ ) − cos ⁡ θ ( sin ⁡ θ ) ′ ( sin ⁡ 2 θ ) = − 1 sin ⁡ 2 θ (\cot \theta)' = \frac{(\cos \theta)'}{(\sin \theta)} - \frac{\cos \theta (\sin \theta)'}{(\sin^2 \theta)} = -\frac{1}{\sin^2 \theta} (cotθ)=(sinθ)(cosθ)(sin2θ)cosθ(sinθ)=sin2θ1

l = r 0 cot ⁡ ( π − θ ) = − r 0 cot ⁡ θ l = r_0 \cot (\pi - \theta) = -r_0 \cot \theta l=r0cot(πθ)=r0cotθ

磁感应强度的积分推导

B = ∫ d B = μ 0 4 π ∫ C D I d l sin ⁡ θ r 2 B = \int \mathrm{d}B = \frac{\mu_0}{4\pi} \int_{C}^{D} \frac{I \mathrm{d}l \sin \theta}{r^2} B=dB=4πμ0CDr2Idlsinθ

d l d θ = l ′ = − r 0 ( cot ⁡ θ ) ′ = r 0 sin ⁡ 2 θ \frac{\mathrm{d}l}{\mathrm{d}\theta} = l' = -r_0 (\cot \theta)' = \frac{r_0}{\sin^2 \theta} dθdl=l=r0(cotθ)=sin2θr0

r = r 0 sin ⁡ ( π − θ ) = r 0 sin ⁡ θ r = \frac{r_0}{\sin (\pi - \theta)} = \frac{r_0}{\sin \theta} r=sin(πθ)r0=sinθr0

所以:

B = μ 0 I 4 π ∫ θ 1 θ 2 sin ⁡ θ r 0 2 d θ = μ 0 I 4 π r 0 ( cos ⁡ θ 1 − cos ⁡ θ 2 ) B = \frac{\mu_0 I}{4\pi} \int_{\theta_1}^{\theta_2} \frac{\sin \theta}{r_0^2} \mathrm{d}\theta = \frac{\mu_0 I}{4\pi r_0} (\cos \theta_1 - \cos \theta_2) B=4πμ0Iθ1θ2r02sinθdθ=4πr0μ0I(cosθ1cosθ2)

无限长载流直导线

θ 1 = 0 \theta_1 = 0 θ1=0 θ 2 = π \theta_2 = \pi θ2=π

B = μ 0 I 2 π r 0 B = \frac{\mu_0 I}{2\pi r_0} B=2πr0μ0I

扩展知识

磁现象

  1. 一切磁现象都源于电荷的运动。

  2. 一切磁力本质上都是电荷之间的作用力。

宇宙间四种基本作用力

  1. 引力:又称重力,是四个基本相互作用中最弱的,但作用范围最大。广义相对论中认为引力是由于弯曲的空间和时间。

  2. 电磁力:世上大部分物质都具有电磁力,磁与电是电磁力的一种表现模式。

  3. 强相互作用力:又称为强核力,所有物质由原子构成,原子由电子和原子核组成,原子核由中子和质子组成。

  4. 弱相互作用力:又称为弱核力,是核能的另一种来源,主要是核子产生的天然辐射,四种相互作用力中,弱相互作用力只比引力强一点。


电磁场公式大全

间宫羽咲sama 于 2020-06-21 22:13:29 发布

代码及其 markdown 源代码的百度云链接如下,请注意:里面有些公式可能由于笔者的疏漏有错误,请不要全部采信。
本内容仅供学习交流使用,完全免费,因此也请不要用本内容进行任何收费活动,如转载请不要对本内容进行修改。
全文共 5w + 字符,公式全手打,作者也挺辛苦的。
以上君子协议,望大家遵守。
时间仓促,内容如有错误,还望多多海涵。

链接:https://pan.baidu.com/s/1Wz4_KqqFDf1AppcATzBj1g

提取码:kj7c


via:


电磁场公式大全

间宫羽咲sama于 2020-06-21 22:13:29 发布

代码及其 markdown 源代码的百度云链接如下,请注意:里面有些公式可能由于笔者的疏漏有错误,请不要全部采信。
本内容仅供学习交流使用,完全免费,因此也请不要用本内容进行任何收费活动,如转载请不要对本内容进行修改。
全文共 5w+ 字符,公式全手打,作者也挺辛苦的。
以上君子协议,望大家遵守。
时间仓促,内容如有错误,还望多多海涵。

链接:https://pan.baidu.com/s/1Wz4_KqqFDf1AppcATzBj1g

提取码:kj7c


基本磁场计算公式的简单推导

卓晴 已于 2022-06-19 18:03:21 修改

对于导线周围的磁场分布,可以从比奥-萨伐尔(Biot-Savart)定理出发,推导出任意电流导线或者导体周围的磁感应强度。讨论这个问题主要是为了能够对 电磁炉中的螺旋线圈.周围的磁场进行数值分析研究。

00 基础理论

1. 毕奥-萨伐尔定律

毕奥-萨伐尔定理 (Biot-Savart Law):电流元 I d l ⃗ Id\vec{l} Idl 在空间某点 P P P 处产生的磁感应强度 d B ⃗ d\vec{B} dB 的大小与电流元 I d l ⃗ Id\vec{l} Idl 的大小成正比,与电流元 I d l ⃗ Id\vec{l} Idl 所在处到 P P P 点的位置矢量和电流元 I d l ⃗ Id\vec{l} Idl 之间的夹角的正弦成正比,而与电流元 I d l ⃗ Id\vec{l} Idl P P P 点的距离的平方成反比。

d B ⃗ = μ 0 4 π ⋅ I d l ⃗ × r ⃗ r 3 = μ 0 4 π ⋅ I d l ⋅ sin ⁡ θ r 2 \mathrm{d}\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}\vec{l} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}l \cdot \sin\theta}{r^2} dB =4πμ0r3Idl ×r =4πμ0r2Idlsinθ

B ⃗ = ∫ L μ 0 4 π ⋅ I d l × e ^ r r 2 \vec{B} = \int_{L} \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}l \times \hat{e}_r}{r^2} B =L4πμ0r2Idl×e^r

其中 I I I 是源电流, L L L 是积分路径。 d l ⃗ d\vec{l} dl 是源电流微分线元素, e ⃗ r \vec{e}_r e r 是电流元到待求场点的单位向量。

μ 0 = 4 π × 1 0 − 7   Tm/A \mu_0 = 4\pi \times 10^{-7} \, \text{Tm/A} μ0=4π×107Tm/A 是真空磁导率值。

毕奥-萨伐尔定律

01 基本磁场推导

2. 直线导线所产生的磁场

下面是非常常见的磁场计算公式推导。如果在一段有限长直线电流旁边 P P P 点,距离直线电流直线距离为 a a a,计算 P P P 点处的磁感应场强 B B B

(1) 推导方法 1

建立如下的坐标系 O x y Oxy Oxy。那么直线上的电流元就是 I d y Idy Idy。根据 Biot-Savart 定理, P P P 点的磁场为:

B P = μ 0 I 4 π ∫ c b sin ⁡ θ y 2 + a 2 d y = μ 0 I 4 π ∫ c b a ( y 2 + a 2 ) 3 / 2 d y B_P = \frac{\mu_0 I}{4\pi} \int_c^b \frac{\sin \theta}{y^2 + a^2} dy = \frac{\mu_0 I}{4\pi} \int_c^b \frac{a}{(y^2 + a^2)^{3/2}} dy BP=4πμ0Icby2+a2sinθdy=4πμ0Icb(y2+a2)3/2ady

其中,对于:

∫ c b d y ( y 2 + a 2 ) 3 / 2 = y a 3 1 + y 2 a 2 ∣ c b \int_c^b \frac{dy}{(y^2 + a^2)^{3/2}} = \frac{y}{a^3 \sqrt{1 + \frac{y^2}{a^2}}} \Big|_c^b cb(y2+a2)3/2dy=a31+a2y2 y cb

代入 b b b c c c 的值可以得到:

B P = μ 0 I 4 π a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) B_P = \frac{\mu_0 I}{4\pi a} \left( \cos \theta_1 - \cos \theta_2 \right) BP=4πaμ0I(cosθ1cosθ2)

(2) 推导方法 2

根据:

y = − a ⋅ cos ⁡ θ sin ⁡ θ y = -a \cdot \frac{\cos \theta}{\sin \theta} y=asinθcosθ

那么对于上式两边同时进行微分:

d y = d ( − a ⋅ cos ⁡ θ sin ⁡ θ ) = a sin ⁡ 2 θ d θ dy = d\left( -a \cdot \frac{\cos \theta}{\sin \theta} \right) = \frac{a}{\sin^2 \theta} d\theta dy=d(asinθcosθ)=sin2θadθ

这其中应用到:

d ( cos ⁡ θ sin ⁡ θ ) = − ( 1 + cos ⁡ 2 θ sin ⁡ 2 θ ) = − 1 sin ⁡ 2 θ d\left( \frac{\cos \theta}{\sin \theta} \right) = - \left( 1 + \frac{\cos^2 \theta}{\sin^2 \theta} \right) = -\frac{1}{\sin^2 \theta} d(sinθcosθ)=(1+sin2θcos2θ)=sin2θ1

那么,由 Biot-Savart 定理:

d y ⃗ × r ⃗ r 3 = d y ⋅ sin ⁡ θ r 2 = a sin ⁡ 2 θ d θ ⋅ sin ⁡ θ ⋅ sin ⁡ θ a = sin ⁡ θ d θ a \frac{d\vec{y} \times \vec{r}}{r^3} = \frac{dy \cdot \sin \theta}{r^2} = \frac{a}{\sin^2 \theta} d\theta \cdot \sin \theta \cdot \frac{\sin \theta}{a} = \frac{\sin \theta d\theta}{a} r3dy ×r =r2dysinθ=sin2θadθsinθasinθ=asinθdθ

最终积分式变为:

μ 0 4 π ∫ c b d y ⃗ × r ⃗ r 3 = μ 0 I 4 π a ∫ θ 1 θ 2 sin ⁡ θ d θ \frac{\mu_0}{4\pi} \int_c^b \frac{d\vec{y} \times \vec{r}}{r^3} = \frac{\mu_0 I}{4\pi a} \int_{\theta_1}^{\theta_2} \sin \theta d\theta 4πμ0cbr3dy ×r =4πaμ0Iθ1θ2sinθdθ

最终可以得到与上式相同的表达式。

3. 圆环的磁场

电流元可以表示为:

d l = R d θ dl = Rd\theta dl=Rdθ

那么积分:

B 0 = μ 0 4 π ∫ 0 2 π I ⋅ R d θ ⋅ R R 3 = μ 0 I 2 R B_0 = \frac{\mu_0}{4\pi} \int_0^{2\pi} \frac{I \cdot Rd\theta \cdot R}{R^3} = \frac{\mu_0 I}{2R} B0=4πμ002πR3IRdθR=2Rμ0I

圆环磁场

02 结论

利用基本的 Biot-Savart 定理,可以得到基本的直线和圆环磁场强度的解析解。对于一些复杂的曲线的推导会非常复杂,具体的结果需要通过数值求解来完成。可以利用在 Laplace 数值逆运算的讨论 给出的一些 Python 语言实现的数值积分来完成求解。

比如利用下面的梯形数值积分来验证一下直线磁场计算数值解。

def trapz(f, a, b, N=50):
x = linspace(a, b, N + 1)
y = f(x)
y_right = y[1:]
y_left = y[:-1]
dx = (b - a) / N
T = dx / 2 * sum(y_right + y_left)
return T

1. 对于直线磁场数值求解

假设具体的参数为:

a = 1 , θ 1 = π 4 , θ 2 = 2 π 3 a = 1, \theta_1 = \frac{\pi}{4}, \theta_2 = \frac{2\pi}{3} a=1,θ1=4π,θ2=32π

I = 1 , μ 0 = 4 π × 1 0 − 7 I = 1, \mu_0 = 4\pi \times 10^{-7} I=1,μ0=4π×107

直接根据公式:

B = μ 0 I 4 π a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) B = \frac{\mu_0 I}{4\pi a} \left( \cos \theta_1 - \cos \theta_2 \right) B=4πaμ0I(cosθ1cosθ2)

可以得到:

B = 1.20711 × 1 0 − 7 B = 1.20711 \times 10^{-7} B=1.20711×107

利用数据进行求解:

c = − a ⋅ cot ⁡ ( π 4 ) = − 1 c = -a \cdot \cot\left( \frac{\pi}{4} \right) = -1 c=acot(4π)=1

b = − a ⋅ cot ⁡ ( 2 π 4 ) = 0.57735 b = -a \cdot \cot\left( \frac{2\pi}{4} \right) = 0.57735 b=acot(42π)=0.57735

B = μ 0 ⋅ I 4 π ∫ c b a ( y 2 + a 2 ) 3 / 2 d y B = \frac{\mu_0 \cdot I}{4\pi} \int_c^b \frac{a}{(y^2 + a^2)^{3/2}} dy B=4πμ0Icb(y2+a2)3/2ady

经过数值积分结果为:

B = 1.207078 × 1 0 − 7 B = 1.207078 \times 10^{-7} B=1.207078×107

对比上述结果可以看到结果是非常接近的。


大学物理电磁学——毕奥·萨伐尔定律

soft word 于 2020-06-10 20:03:49 发布

毕奥·萨伐尔定律

公式汇总

一般公式:

d B = μ 0 4 π I d l ⃗ × r ⃗ r 3 = μ 0 4 π I d l sin ⁡ α r 2 dB = \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{Idl \sin \alpha}{r^2} dB=4πμ0r3Idl ×r =4πμ0r2Idlsinα

载流直导线的磁场:

B = μ 0 I 4 π a ( cos ⁡ α 1 − cos ⁡ α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1cosα2)

无限长载流直导线:

B = μ 0 I 2 π a B = \frac{\mu_0 I}{2\pi a} B=2πaμ0I

载流圆线圈轴上的磁场:

B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2

圆心处:

x = 0 , B 0 = μ 0 I 2 R x = 0, \quad B_0 = \frac{\mu_0 I}{2R} x=0,B0=2Rμ0I

通电螺线管:

B = μ 0 n I 2 ( x 2 x 2 2 + R 2 − x 1 x 1 2 + R 2 ) B = \frac{\mu_0 n I}{2} \left( \frac{x_2}{\sqrt{x_2^2 + R^2}} - \frac{x_1}{\sqrt{x_1^2 + R^2}} \right) B=2μ0nI(x22+R2 x2x12+R2 x1)

对于无限长的螺线管:

B = μ 0 n I B = \mu_0 n I B=μ0nI

1. 磁现象

  • 一切磁现象都源于电荷的运动。

  • 一切磁力本质上都是电荷之间的作用力。

一切磁现象都源于电荷运动,磁相互作用的本质就是运动电荷(电流)之间的运动。

2. 毕奥·萨伐尔定律

2.1 电流元

定义:

I d l ⃗ I \vec{dl} Idl

大小为 I d l Idl Idl,方向由线元所在处电流的流向来确定。

目的:用积分法来求出任意形状的磁场分布。

2.2 电流元的磁场

大小:

d B = μ 0 4 π I d l ⃗ × r ⃗ r 3 = μ 0 4 π I d l sin ⁡ α r 2 dB = \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{Idl \sin \alpha}{r^2} dB=4πμ0r3Idl ×r =4πμ0r2Idlsinα

真空磁导率:

μ 0 = 4 π × 1 0 − 7   N ⋅ A − 2 \mu_0 = 4\pi \times 10^{-7} \, \text{N} \cdot \text{A}^{-2} μ0=4π×107NA2

运用积分:

B ⃗ = ∫ d B ⃗ = ∫ μ 0 4 π I d l ⃗ × r ⃗ r 3 \vec{B} = \int d\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r}}{r^3} B =dB =4πμ0r3Idl ×r

解题步骤:

  1. 建立坐标系。

  2. 分割电流元。

  3. 确定电流元的磁场。

  4. 坐标分解求 d B x dB_x dBx d B y dB_y dBy d B z dB_z dBz,然后统一积分变量求出 d B x dB_x dBx d B y dB_y dBy d B z dB_z dBz

  5. B ⃗ = d B x i ⃗ + d B y j ⃗ + d B z k ⃗ \vec{B} = dB_x \vec{i} + dB_y \vec{j} + dB_z \vec{k} B =dBxi +dByj +dBzk ,求总场。


毕奥·萨伐尔定律运用实例

载流直导线的磁场

B = μ 0 I 4 π a ( cos ⁡ α 1 − cos ⁡ α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1cosα2)

其中, a a a 是点到导线的垂直距离, α 1 \alpha_1 α1 是电流入端点与该点与待求点连线之间的夹角。

载流直导线的磁场

一般情况:

B = μ 0 I 4 π a ( cos ⁡ α 1 − cos ⁡ α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1cosα2)

无限长载流直导线:

α 1 = 0 , α 2 = π , B = μ 0 I 2 π a \alpha_1 = 0, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{2\pi a} α1=0,α2=π,B=2πaμ0I

半无限长载流直导线(点与其入端平齐):

α 1 = π 2 , α 2 = π , B = μ 0 I 4 π a \alpha_1 = \frac{\pi}{2}, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{4\pi a} α1=2π,α2=π,B=4πaμ0I

半无限长载流直导线:

α 1 = β , α 2 = π , B = μ 0 I 4 π a ( cos ⁡ β + 1 ) \alpha_1 = \beta, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{4\pi a} (\cos \beta + 1) α1=β,α2=π,B=4πaμ0I(cosβ+1)

载流导线延长线上任意一点的磁场:

B ⃗ = 0 \vec{B} = 0 B =0

载流圆线圈轴上的磁场

B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2

圆心处:

x = 0 , B 0 = μ 0 I 2 R x = 0, \quad B_0 = \frac{\mu_0 I}{2R} x=0,B0=2Rμ0I

如果是圆弧形的电流:

B 0 = μ 0 I 2 R θ 2 π B_0 = \frac{\mu_0 I}{2R} \frac{\theta}{2\pi} B0=2Rμ0I2πθ

载流密绕直螺线管轴上的磁场

载流密绕直螺线管轴上的磁场

B = μ 0 n I 2 ( x 2 x 2 2 + R 2 − x 1 x 1 2 + R 2 ) B = \frac{\mu_0 n I}{2} \left( \frac{x_2}{\sqrt{x_2^2 + R^2}} - \frac{x_1}{\sqrt{x_1^2 + R^2}} \right) B=2μ0nI(x22+R2 x2x12+R2 x1)

对于无限长的螺线管:

B = μ 0 n I B = \mu_0 n I B=μ0nI

运动电荷产生的磁场

运用公式:

B ⃗ = ∫ d B ⃗ = ∫ μ 0 4 π I d l ⃗ × r ⃗ r 3 \vec{B} = \int d\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r}}{r^3} B =dB =4πμ0r3Idl ×r

常见情况:

  1. 离散运动电荷已知速度,则对一个圆周进行积分:

I = q T I = \frac{q}{T} I=Tq

其中 T T T 是电荷绕一圈的周期。

离散运动电荷

(-e) 的原因是, I I I 的方向与负电荷运动方向相反。

  1. 带电圆环已知每秒绕 N N N 转,与之前类似, T = 1 N T = \frac{1}{N} T=N1

3. 磁距

平面载流线圈的磁距:

p ⃗ m = I S ⃗ \vec{p}_m = I \vec{S} p m=IS

其中, S ⃗ \vec{S} S 的方向就是法向量的方向。

载流线圈轴线上距圆心很远的场可表示为:

B = μ 0 I R 2 2 x 3 = μ 0 I π R 2 2 π x 3 = μ 0 I S ⃗ 2 π x 3 = μ 0 p m 2 π x 3 B = \frac{\mu_0 I R^2}{2x^3} = \frac{\mu_0 I \pi R^2}{2\pi x^3} = \frac{\mu_0 I \vec{S}}{2\pi x^3} = \frac{\mu_0 p_m}{2\pi x^3} B=2x3μ0IR2=2πx3μ0IπR2=2πx3μ0IS =2πx3μ0pm

考虑方向:

B ⃗ = μ 0 p ⃗ m 2 π x 3 \vec{B} = \frac{\mu_0 \vec{p}_m}{2\pi x^3} B =2πx3μ0p m

当圆电流的半径很小或者讨论远离圆电流处的磁场分布时,把圆电流称作磁偶极子,产生的磁场称为磁偶极磁场。


大学物理之毕奥·萨伐尔定律推导

映之123 于 2022-02-13 12:11:22 发布

毕奥·萨伐尔定律

d B = μ 0 4 π I d l ⃗ × r ⃗ r 2 dB = \frac{\mu_0}{4\pi} \frac{I d\vec{l} \times \vec{r}}{r^2} dB=4πμ0r2Idl ×r

其中, e ⃗ r \vec{e}_r e r 是从电流元指向参考点方向的单位矢量, μ 0 \mu_0 μ0 是真空磁导率。电流元产生的磁场的磁感应强度 d B dB dB 垂直于 I d l ⃗ I d\vec{l} Idl e ⃗ r \vec{e}_r e r 组成的平面,并满足右手螺旋定则。

电流元

定义:

I d ⃗ l I \vec{d}l Id l

为电流元。大小为 I d l I dl Idl d ⃗ l \vec{d}l d l 的方向由线元所在处电流的流向来确定。

目的:用积分法来求出任意形状的磁场分布。

电流元的磁场

大小:

d B = μ 0 4 π I d ⃗ l × r ⃗ r 3 = μ 0 4 π I d l sin ⁡ θ r 2 dB = \frac{\mu_0}{4\pi} \frac{I \vec{d}l \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I dl \sin \theta}{r^2} dB=4πμ0r3Id l×r =4πμ0r2Idlsinθ

载流直导线的磁场

长为 l l l 的载流直导线,其中电流为 I I I,计算距离直导线为 r 0 r_0 r0 的点 P P P 的磁感应强度。

载流直导线的磁场

涉及到的数学公式

cot ⁡ θ = cos ⁡ θ sin ⁡ θ \cot \theta = \frac{\cos \theta}{\sin \theta} cotθ=sinθcosθ

( cot ⁡ θ ) ′ = ( cos ⁡ θ ) ′ ( sin ⁡ θ ) − cos ⁡ θ ( sin ⁡ θ ) ′ ( sin ⁡ 2 θ ) = − 1 sin ⁡ 2 θ (\cot \theta)' = \frac{(\cos \theta)'}{(\sin \theta)} - \frac{\cos \theta (\sin \theta)'}{(\sin^2 \theta)} = -\frac{1}{\sin^2 \theta} (cotθ)=(sinθ)(cosθ)(sin2θ)cosθ(sinθ)=sin2θ1

l = r 0 cot ⁡ ( π − θ ) = − r 0 cot ⁡ θ l = r_0 \cot (\pi - \theta) = -r_0 \cot \theta l=r0cot(πθ)=r0cotθ

磁感应强度的积分推导

B = ∫ d B = μ 0 4 π ∫ C D I d l sin ⁡ θ r 2 B = \int dB = \frac{\mu_0}{4\pi} \int_{C}^{D} \frac{I dl \sin \theta}{r^2} B=dB=4πμ0CDr2Idlsinθ

d l d θ = l ′ = − r 0 ( cot ⁡ θ ) ′ = r 0 sin ⁡ 2 θ \frac{dl}{d\theta} = l' = -r_0 (\cot \theta)' = \frac{r_0}{\sin^2 \theta} dθdl=l=r0(cotθ)=sin2θr0

r = r 0 sin ⁡ ( π − θ ) = r 0 sin ⁡ θ r = \frac{r_0}{\sin (\pi - \theta)} = \frac{r_0}{\sin \theta} r=sin(πθ)r0=sinθr0

所以:

B = μ 0 I 4 π ∫ θ 1 θ 2 sin ⁡ θ r 0 2 d θ = μ 0 I 4 π r 0 ( cos ⁡ θ 1 − cos ⁡ θ 2 ) B = \frac{\mu_0 I}{4\pi} \int_{\theta_1}^{\theta_2} \frac{\sin \theta}{r_0^2} d\theta = \frac{\mu_0 I}{4\pi r_0} (\cos \theta_1 - \cos \theta_2) B=4πμ0Iθ1θ2r02sinθdθ=4πr0μ0I(cosθ1cosθ2)

无限长载流直导线

θ 1 = 0 \theta_1 = 0 θ1=0 θ 2 = π \theta_2 = \pi θ2=π

B = μ 0 I 2 π r 0 B = \frac{\mu_0 I}{2\pi r_0} B=2πr0μ0I

扩展知识

磁现象

  1. 一切磁现象都源于电荷的运动。

  2. 一切磁力本质上都是电荷之间的作用力。

宇宙间四种基本作用力

  1. 引力:又称重力,是四个基本相互作用中最弱的,但作用范围最大。广义相对论中认为引力是由于弯曲的空间和时间。

  2. 电磁力:世上大部分物质都具有电磁力,磁与电是电磁力的一种表现模式。

  3. 强相互作用力:又称为强核力,所有物质由原子构成,原子由电子和原子核组成,原子核由中子和质子组成。

  4. 弱相互作用力:又称为弱核力,是核能的另一种来源,主要是核子产生的天然辐射,四种相互作用力中,弱相互作用力只比引力强一点。


via:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值