注:本文为 “电磁学公式” 相关文章合辑。
如有内容异常,请看原文。
不定期修订。
基本磁场计算公式的简单推导
卓晴 已于 2022-06-19 18:03:21 修改
对于导线周围的磁场分布,可以从比奥 - 萨伐尔(Biot - Savart)定理出发,推导出任意电流导线或者导体周围的磁感应强度。讨论这个问题主要是为了能够对 电磁炉中的螺旋线圈.周围的磁场进行数值分析研究。
00 基础理论
1. 毕奥 - 萨伐尔定律
毕奥 - 萨伐尔定理 (Biot - Savart Law):电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 在空间某点 P P P 处产生的磁感应强度 d B ⃗ \mathrm{d}\vec{B} dB 的大小与电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 的大小成正比,与电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 所在处到 P P P 点的位置矢量和电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 之间的夹角的正弦成正比,而与电流元 I d l ⃗ I\mathrm{d}\vec{l} Idl 到 P P P 点的距离的平方成反比。
d B ⃗ = μ 0 4 π ⋅ I d l ⃗ × r ⃗ r 3 = μ 0 4 π ⋅ I d l ⋅ sin θ r 2 \mathrm{d}\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}\vec{l} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}l \cdot \sin\theta}{r^2} dB=4πμ0⋅r3Idl×r=4πμ0⋅r2Idl⋅sinθ
B ⃗ = ∫ L μ 0 4 π ⋅ I d l × e ⃗ r r 2 \vec{B} = \int_{L} \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}l \times \vec{e}_r}{r^2} B=∫L4πμ0⋅r2Idl×er
其中 I I I 是源电流, L L L 是积分路径。 d l ⃗ \mathrm{d}\vec{l} dl 是源电流微分线元素, e ⃗ r \vec{e}_r er 是电流元到待求场点的单位向量。
μ 0 = 4 π × 1 0 − 7 Tm/A \mu_0 = 4\pi \times 10^{-7} \, \text{Tm/A} μ0=4π×10−7Tm/A 是真空磁导率值。
01 基本磁场推导
2. 直线导线所产生的磁场
下面是非常常见的磁场计算公式推导。如果在一段有限长直线电流旁边 P P P 点,距离直线电流直线距离为 a a a,计算 P P P 点处的磁感应场强 B B B。
(1) 推导方法 1
建立如下的坐标系 O x y Oxy Oxy。那么直线上的电流元就是 I d y Idy Idy。根据 Biot - Savart 定理, P P P 点的磁场为:
▲ 有限长直线旁边的磁场
B P = μ 0 I 4 π ∫ c b sin θ y 2 + a 2 d y = μ 0 I 4 π ∫ c b a ( y 2 + a 2 ) 3 / 2 d y B_P = \frac{\mu_0 I}{4\pi} \int_c^b \frac{\sin \theta}{y^2 + a^2} \mathrm{d}y = \frac{\mu_0 I}{4\pi} \int_c^b \frac{a}{(y^2 + a^2)^{3/2}} \mathrm{d}y BP=4πμ0I∫cby2+a2sinθdy=4πμ0I∫cb(y2+a2)3/2ady
其中,对于:
∫ c b d y ( y 2 + a 2 ) 3 / 2 = y a 3 1 + y 2 a 2 ∣ c b \int_c^b \frac{\mathrm{d}y}{(y^2 + a^2)^{3/2}} = \frac{y}{a^3 \sqrt{1 + \frac{y^2}{a^2}}} \Big|_c^b ∫cb(y2+a2)3/2dy=a31+a2y2y cb
代入 b b b 和 c c c 的值可以得到:
B P = μ 0 I 4 π a ( cos θ 1 − cos θ 2 ) B_P = \frac{\mu_0 I}{4\pi a} \left( \cos \theta_1 - \cos \theta_2 \right) BP=4πaμ0I(cosθ1−cosθ2)
(2) 推导方法 2
根据:
y = − a ⋅ cos θ sin θ y = -a \cdot \frac{\cos \theta}{\sin \theta} y=−a⋅sinθcosθ
那么对于上式两边同时进行微分:
d y = d ( − a ⋅ cos θ sin θ ) = a sin 2 θ d θ \mathrm{d}y = \mathrm{d}\left( -a \cdot \frac{\cos \theta}{\sin \theta} \right) = \frac{a}{\sin^2 \theta} \mathrm{d}\theta dy=d(−a⋅sinθcosθ)=sin2θadθ
这其中应用到:
d ( cos θ sin θ ) = − ( 1 + cos 2 θ sin 2 θ ) = − 1 sin 2 θ \mathrm{d}\left( \frac{\cos \theta}{\sin \theta} \right) = - \left( 1 + \frac{\cos^2 \theta}{\sin^2 \theta} \right) = -\frac{1}{\sin^2 \theta} d(sinθcosθ)=−(1+sin2θcos2θ)=−sin2θ1
#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY -- by Dr. ZhuoQing 2020-09-25
#
# Note:
#============================================================
from headm import *
from sympy import symbols,Integral, oo, exp, integrate
from sympy import print_latex, sin, cos, sqrt, diff
x, y, a= symbols('x, y, a')
ixs = diff(cos(x)/sin(x),x)
#------------------------------------------------------------
print_latex(ixs)
tspec('msg2latex')
#------------------------------------------------------------
# END OF FILE : TEST1.PY
#============================================================
那么,由 Biot - Savart 定理:
d y ⃗ × r ⃗ r 3 = d y ⋅ sin θ r 2 = a sin 2 θ d θ ⋅ sin θ ⋅ sin θ a = sin θ d θ a \frac{\mathrm{d}\vec{y} \times \vec{r}}{r^3} = \frac{\mathrm{d}y \cdot \sin \theta}{r^2} = \frac{a}{\sin^2 \theta} \mathrm{d}\theta \cdot \sin \theta \cdot \frac{\sin \theta}{a} = \frac{\sin \theta \mathrm{d}\theta}{a} r3dy×r=r2dy⋅sinθ=sin2θadθ⋅sinθ⋅asinθ=asinθdθ
最终积分式变为:
μ 0 4 π ∫ c b d y ⃗ × r ⃗ r 3 = μ 0 I 4 π a ∫ θ 1 θ 2 sin θ d θ \frac{\mu_0}{4\pi} \int_c^b \frac{\mathrm{d}\vec{y} \times \vec{r}}{r^3} = \frac{\mu_0 I}{4\pi a} \int_{\theta_1}^{\theta_2} \sin \theta \mathrm{d}\theta 4πμ0∫cbr3dy×r=4πaμ0I∫θ1θ2sinθdθ
最终可以得到与上式相同的表达式。
3. 圆环的磁场
电流元可以表示为:
d l = R d θ \mathrm{d}l = R\mathrm{d}\theta dl=Rdθ
那么积分:
B 0 = μ 0 4 π ∫ 0 2 π I ⋅ R d θ ⋅ R R 3 = μ 0 I 2 R B_0 = \frac{\mu_0}{4\pi} \int_0^{2\pi} \frac{I \cdot R\mathrm{d}\theta \cdot R}{R^3} = \frac{\mu_0 I}{2R} B0=4πμ0∫02πR3I⋅Rdθ⋅R=2Rμ0I
02 结论
利用基本的 Biot - Savart 定理,可以得到基本的直线和圆环磁场强度的解析解。对于一些复杂的曲线的推导会非常复杂,具体的结果需要通过数值求解来完成。可以利用在 Laplace 数值逆运算的讨论 给出的一些 Python 语言实现的数值积分来完成求解。
比如利用下面的梯形数值积分来验证一下直线磁场计算数值解。
def trapz(f, a, b, N=50):
x = linspace(a, b, N + 1)
y = f(x)
y_right = y[1:]
y_left = y[:-1]
dx = (b - a) / N
T = dx / 2 * sum(y_right + y_left)
return T
1. 对于直线磁场数值求解
假设具体的参数为:
a = 1 , θ 1 = π 4 , θ 2 = 2 π 3 a = 1, \quad \theta_1 = \frac{\pi}{4}, \quad \theta_2 = \frac{2\pi}{3} a=1,θ1=4π,θ2=32π
I = 1 , μ 0 = 4 π × 1 0 − 7 I = 1, \quad \mu_0 = 4\pi \times 10^{-7} I=1,μ0=4π×10−7
直接根据公式:
B = μ 0 I 4 π a ( cos θ 1 − cos θ 2 ) B = \frac{\mu_0 I}{4\pi a} \left( \cos \theta_1 - \cos \theta_2 \right) B=4πaμ0I(cosθ1−cosθ2)
可以得到:
B = 1.20711 × 1 0 − 7 B = 1.20711 \times 10^{-7} B=1.20711×10−7
利用数据进行求解:
c = − a ⋅ cot ( π 4 ) = − 1 c = -a \cdot \cot\left( \frac{\pi}{4} \right) = -1 c=−a⋅cot(4π)=−1
b = − a ⋅ cot ( 2 π 4 ) = 0.57735 b = -a \cdot \cot\left( \frac{2\pi}{4} \right) = 0.57735 b=−a⋅cot(42π)=0.57735
B = μ 0 ⋅ I 4 π ∫ c b a ( y 2 + a 2 ) 3 / 2 d y B = \frac{\mu_0 \cdot I}{4\pi} \int_c^b \frac{a}{(y^2 + a^2)^{3/2}} \mathrm{d}y B=4πμ0⋅I∫cb(y2+a2)3/2ady
经过数值积分结果为:
B = 1.207078 × 1 0 − 7 B = 1.207078 \times 10^{-7} B=1.207078×10−7
对比上述结果可以看到结果是非常接近的。
大学物理电磁学——毕奥·萨伐尔定律
soft word 于 2020-06-10 20:03:49 发布
毕奥·萨伐尔定律
公式汇总
一般公式:
d B = μ 0 4 π I d l ⃗ × r ⃗ r 3 = μ 0 4 π I d l sin α r 2 \mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}l} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I\mathrm{d}l \sin \alpha}{r^2} dB=4πμ0r3Idl×r=4πμ0r2Idlsinα
载流直导线的磁场:
B = μ 0 I 4 π a ( cos α 1 − cos α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1−cosα2)
无限长载流直导线:
B = μ 0 I 2 π a B = \frac{\mu_0 I}{2\pi a} B=2πaμ0I
载流圆线圈轴上的磁场:
B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2
圆心处:
x = 0 , B 0 = μ 0 I 2 R x = 0, \quad B_0 = \frac{\mu_0 I}{2R} x=0,B0=2Rμ0I
通电螺线管:
B = μ 0 n I 2 ( x 2 x 2 2 + R 2 − x 1 x 1 2 + R 2 ) B = \frac{\mu_0 n I}{2} \left( \frac{x_2}{\sqrt{x_2^2 + R^2}} - \frac{x_1}{\sqrt{x_1^2 + R^2}} \right) B=2μ0nI(x22+R2x2−x12+R2x1)
对于无限长的螺线管:
B = μ 0 n I B = \mu_0 n I B=μ0nI
1. 磁现象
-
一切磁现象都源于电荷的运动。
-
一切磁力本质上都是电荷之间的作用力。
一切磁现象都源于电荷运动,磁相互作用的本质就是运动电荷(电流)之间的运动。
2. 毕奥·萨伐尔定律
2.1 电流元
定义:
I d l ⃗ I \vec{\mathrm{d}l} Idl
大小为 I d l I\mathrm{d}l Idl,方向由线元所在处电流的流向来确定。
目的:用积分法来求出任意形状的磁场分布。
2.2 电流元的磁场
大小:
d B = μ 0 4 π I d l ⃗ × r ⃗ r 3 = μ 0 4 π I d l sin α r 2 \mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}l} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I\mathrm{d}l \sin \alpha}{r^2} dB=4πμ0r3Idl×r=4πμ0r2Idlsinα
真空磁导率:
μ 0 = 4 π × 1 0 − 7 N ⋅ A − 2 \mu_0 = 4\pi \times 10^{-7} \, \text{N} \cdot \text{A}^{-2} μ0=4π×10−7N⋅A−2
运用积分:
B ⃗ = ∫ d B ⃗ = ∫ μ 0 4 π I d l ⃗ × r ⃗ r 3 \vec{B} = \int \mathrm{d}\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}l} \times \vec{r}}{r^3} B=∫dB=∫4πμ0r3Idl×r
解题步骤:
-
建立坐标系。
-
分割电流元。
-
确定电流元的磁场。
-
坐标分解求 d B x \mathrm{d}B_x dBx, d B y \mathrm{d}B_y dBy, d B z \mathrm{d}B_z dBz,然后统一积分变量求出 d B x \mathrm{d}B_x dBx, d B y \mathrm{d}B_y dBy, d B z \mathrm{d}B_z dBz。
-
由 B ⃗ = d B x i ⃗ + d B y j ⃗ + d B z k ⃗ \vec{B} = \mathrm{d}B_x \vec{i} + \mathrm{d}B_y \vec{j} + \mathrm{d}B_z \vec{k} B=dBxi+dByj+dBzk,求总场。
毕奥·萨伐尔定律运用实例
载流直导线的磁场
B = μ 0 I 4 π a ( cos α 1 − cos α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1−cosα2)
其中, a a a 是点到导线的垂直距离, α 1 \alpha_1 α1 是电流入端点与该点与待求点连线之间的夹角。
一般情况:
B = μ 0 I 4 π a ( cos α 1 − cos α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1−cosα2)
无限长载流直导线:
α 1 = 0 , α 2 = π , B = μ 0 I 2 π a \alpha_1 = 0, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{2\pi a} α1=0,α2=π,B=2πaμ0I
半无限长载流直导线(点与其入端平齐):
α 1 = π 2 , α 2 = π , B = μ 0 I 4 π a \alpha_1 = \frac{\pi}{2}, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{4\pi a} α1=2π,α2=π,B=4πaμ0I
半无限长载流直导线:
α 1 = β , α 2 = π , B = μ 0 I 4 π a ( cos β + 1 ) \alpha_1 = \beta, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{4\pi a} (\cos \beta + 1) α1=β,α2=π,B=4πaμ0I(cosβ+1)
载流导线延长线上任意一点的磁场:
B ⃗ = 0 \vec{B} = 0 B=0
载流圆线圈轴上的磁场
B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2
圆心处:
x = 0 , B 0 = μ 0 I 2 R x = 0, \quad B_0 = \frac{\mu_0 I}{2R} x=0,B0=2Rμ0I
如果是圆弧形的电流:
B 0 = μ 0 I 2 R θ 2 π B_0 = \frac{\mu_0 I}{2R} \frac{\theta}{2\pi} B0=2Rμ0I2πθ
载流密绕直螺线管轴上的磁场
B = μ 0 n I 2 ( x 2 x 2 2 + R 2 − x 1 x 1 2 + R 2 ) B = \frac{\mu_0 n I}{2} \left( \frac{x_2}{\sqrt{x_2^2 + R^2}} - \frac{x_1}{\sqrt{x_1^2 + R^2}} \right) B=2μ0nI(x22+R2x2−x12+R2x1)
对于无限长的螺线管:
B = μ 0 n I B = \mu_0 n I B=μ0nI
运动电荷产生的磁场
运用公式:
B ⃗ = ∫ d B ⃗ = ∫ μ 0 4 π I d l ⃗ × r ⃗ r 3 \vec{B} = \int \mathrm{d}\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}l} \times \vec{r}}{r^3} B=∫dB=∫4πμ0r3Idl×r
常见情况:
- 离散运动电荷已知速度,则对一个圆周进行积分:
I = q T I = \frac{q}{T} I=Tq
其中 T T T 是电荷绕一圈的周期。
− e -e −e 的原因是, I I I 的方向与负电荷运动方向相反。
- 带电圆环已知每秒绕 N N N 转,与之前类似, T = 1 N T = \frac{1}{N} T=N1。
3. 磁距
平面载流线圈的磁距:
p ⃗ m = I S ⃗ \vec{p}_m = I \vec{S} pm=IS
其中, S ⃗ \vec{S} S 的方向就是法向量的方向。
载流线圈轴线上距圆心很远的场可表示为:
B = μ 0 I R 2 2 x 3 = μ 0 I π R 2 2 π x 3 = μ 0 I S ⃗ 2 π x 3 = μ 0 p m 2 π x 3 B = \frac{\mu_0 I R^2}{2x^3} = \frac{\mu_0 I \pi R^2}{2\pi x^3} = \frac{\mu_0 I \vec{S}}{2\pi x^3} = \frac{\mu_0 p_m}{2\pi x^3} B=2x3μ0IR2=2πx3μ0IπR2=2πx3μ0IS=2πx3μ0pm
考虑方向:
B ⃗ = μ 0 p ⃗ m 2 π x 3 \vec{B} = \frac{\mu_0 \vec{p}_m}{2\pi x^3} B=2πx3μ0pm
当圆电流的半径很小或者讨论远离圆电流处的磁场分布时,把圆电流称作磁偶极子,产生的磁场称为磁偶极磁场。
大学物理之毕奥·萨伐尔定律推导
映之123 于 2022-02-13 12:11:22 发布
毕奥·萨伐尔定律
d B = μ 0 4 π I d l ⃗ × r ⃗ r 2 \mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}\vec{l} \times \vec{r}}{r^2} dB=4πμ0r2Idl×r
其中, e ⃗ r \vec{e}_r er 是从电流元指向参考点方向的单位矢量, μ 0 \mu_0 μ0 是真空磁导率。电流元产生的磁场的磁感应强度 d B \mathrm{d}B dB 垂直于 I d l ⃗ I \mathrm{d}\vec{l} Idl 与 e ⃗ r \vec{e}_r er 组成的平面,并满足右手螺旋定则。
电流元
定义:
I d ⃗ l I \vec{\mathrm{d}}l Idl
为电流元。大小为 I d l I \mathrm{d}l Idl, d ⃗ l \vec{\mathrm{d}}l dl 的方向由线元所在处电流的流向来确定。
目的:用积分法来求出任意形状的磁场分布。
电流元的磁场
大小:
d B = μ 0 4 π I d ⃗ l × r ⃗ r 3 = μ 0 4 π I d l sin θ r 2 \mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \vec{\mathrm{d}}l \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}l \sin \theta}{r^2} dB=4πμ0r3Idl×r=4πμ0r2Idlsinθ
载流直导线的磁场
长为 l l l 的载流直导线,其中电流为 I I I,计算距离直导线为 r 0 r_0 r0 的点 P P P 的磁感应强度。
涉及到的数学公式
cot θ = cos θ sin θ \cot \theta = \frac{\cos \theta}{\sin \theta} cotθ=sinθcosθ
( cot θ ) ′ = ( cos θ ) ′ ( sin θ ) − cos θ ( sin θ ) ′ ( sin 2 θ ) = − 1 sin 2 θ (\cot \theta)' = \frac{(\cos \theta)'}{(\sin \theta)} - \frac{\cos \theta (\sin \theta)'}{(\sin^2 \theta)} = -\frac{1}{\sin^2 \theta} (cotθ)′=(sinθ)(cosθ)′−(sin2θ)cosθ(sinθ)′=−sin2θ1
l = r 0 cot ( π − θ ) = − r 0 cot θ l = r_0 \cot (\pi - \theta) = -r_0 \cot \theta l=r0cot(π−θ)=−r0cotθ
磁感应强度的积分推导
B = ∫ d B = μ 0 4 π ∫ C D I d l sin θ r 2 B = \int \mathrm{d}B = \frac{\mu_0}{4\pi} \int_{C}^{D} \frac{I \mathrm{d}l \sin \theta}{r^2} B=∫dB=4πμ0∫CDr2Idlsinθ
d l d θ = l ′ = − r 0 ( cot θ ) ′ = r 0 sin 2 θ \frac{\mathrm{d}l}{\mathrm{d}\theta} = l' = -r_0 (\cot \theta)' = \frac{r_0}{\sin^2 \theta} dθdl=l′=−r0(cotθ)′=sin2θr0
r = r 0 sin ( π − θ ) = r 0 sin θ r = \frac{r_0}{\sin (\pi - \theta)} = \frac{r_0}{\sin \theta} r=sin(π−θ)r0=sinθr0
所以:
B = μ 0 I 4 π ∫ θ 1 θ 2 sin θ r 0 2 d θ = μ 0 I 4 π r 0 ( cos θ 1 − cos θ 2 ) B = \frac{\mu_0 I}{4\pi} \int_{\theta_1}^{\theta_2} \frac{\sin \theta}{r_0^2} \mathrm{d}\theta = \frac{\mu_0 I}{4\pi r_0} (\cos \theta_1 - \cos \theta_2) B=4πμ0I∫θ1θ2r02sinθdθ=4πr0μ0I(cosθ1−cosθ2)
无限长载流直导线
则 θ 1 = 0 \theta_1 = 0 θ1=0, θ 2 = π \theta_2 = \pi θ2=π
B = μ 0 I 2 π r 0 B = \frac{\mu_0 I}{2\pi r_0} B=2πr0μ0I
扩展知识
磁现象
-
一切磁现象都源于电荷的运动。
-
一切磁力本质上都是电荷之间的作用力。
宇宙间四种基本作用力
-
引力:又称重力,是四个基本相互作用中最弱的,但作用范围最大。广义相对论中认为引力是由于弯曲的空间和时间。
-
电磁力:世上大部分物质都具有电磁力,磁与电是电磁力的一种表现模式。
-
强相互作用力:又称为强核力,所有物质由原子构成,原子由电子和原子核组成,原子核由中子和质子组成。
-
弱相互作用力:又称为弱核力,是核能的另一种来源,主要是核子产生的天然辐射,四种相互作用力中,弱相互作用力只比引力强一点。
电磁场公式大全
间宫羽咲sama 于 2020-06-21 22:13:29 发布
代码及其 markdown 源代码的百度云链接如下,请注意:里面有些公式可能由于笔者的疏漏有错误,请不要全部采信。
本内容仅供学习交流使用,完全免费,因此也请不要用本内容进行任何收费活动,如转载请不要对本内容进行修改。
全文共 5w + 字符,公式全手打,作者也挺辛苦的。
以上君子协议,望大家遵守。
时间仓促,内容如有错误,还望多多海涵。
链接:https://pan.baidu.com/s/1Wz4_KqqFDf1AppcATzBj1g
提取码:kj7c
via:
-
电磁场公式大全 - CSDN 博客
https://blog.csdn.net/MamiyaHasaki/article/details/106891976 -
基本磁场计算公式的简单推导 - 有限长载流直导线的磁场公式 - CSDN 博客
https://blog.csdn.net/zhuoqingjoking97298/article/details/108786790 -
大学物理电磁学——毕奥·萨伐尔定律 - 毕奥萨伐尔定律 - CSDN 博客
https://blog.csdn.net/weixin_45864618/article/details/106672456 -
大学物理之毕奥·萨伐尔定律推导 - 毕萨定律是怎么推出来的 - CSDN 博客
https://blog.csdn.net/zhongzhongge/article/details/122906537
电磁场公式大全
间宫羽咲sama于 2020-06-21 22:13:29 发布
代码及其 markdown 源代码的百度云链接如下,请注意:里面有些公式可能由于笔者的疏漏有错误,请不要全部采信。
本内容仅供学习交流使用,完全免费,因此也请不要用本内容进行任何收费活动,如转载请不要对本内容进行修改。
全文共 5w+ 字符,公式全手打,作者也挺辛苦的。
以上君子协议,望大家遵守。
时间仓促,内容如有错误,还望多多海涵。
链接:https://pan.baidu.com/s/1Wz4_KqqFDf1AppcATzBj1g
提取码:kj7c
基本磁场计算公式的简单推导
卓晴 已于 2022-06-19 18:03:21 修改
对于导线周围的磁场分布,可以从比奥-萨伐尔(Biot-Savart)定理出发,推导出任意电流导线或者导体周围的磁感应强度。讨论这个问题主要是为了能够对 电磁炉中的螺旋线圈.周围的磁场进行数值分析研究。
00 基础理论
1. 毕奥-萨伐尔定律
毕奥-萨伐尔定理 (Biot-Savart Law):电流元 I d l ⃗ Id\vec{l} Idl 在空间某点 P P P 处产生的磁感应强度 d B ⃗ d\vec{B} dB 的大小与电流元 I d l ⃗ Id\vec{l} Idl 的大小成正比,与电流元 I d l ⃗ Id\vec{l} Idl 所在处到 P P P 点的位置矢量和电流元 I d l ⃗ Id\vec{l} Idl 之间的夹角的正弦成正比,而与电流元 I d l ⃗ Id\vec{l} Idl 到 P P P 点的距离的平方成反比。
d B ⃗ = μ 0 4 π ⋅ I d l ⃗ × r ⃗ r 3 = μ 0 4 π ⋅ I d l ⋅ sin θ r 2 \mathrm{d}\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}\vec{l} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}l \cdot \sin\theta}{r^2} dB=4πμ0⋅r3Idl×r=4πμ0⋅r2Idl⋅sinθ
B ⃗ = ∫ L μ 0 4 π ⋅ I d l × e ^ r r 2 \vec{B} = \int_{L} \frac{\mu_0}{4\pi} \cdot \frac{I\mathrm{d}l \times \hat{e}_r}{r^2} B=∫L4πμ0⋅r2Idl×e^r
其中 I I I 是源电流, L L L 是积分路径。 d l ⃗ d\vec{l} dl 是源电流微分线元素, e ⃗ r \vec{e}_r er 是电流元到待求场点的单位向量。
μ 0 = 4 π × 1 0 − 7 Tm/A \mu_0 = 4\pi \times 10^{-7} \, \text{Tm/A} μ0=4π×10−7Tm/A 是真空磁导率值。
01 基本磁场推导
2. 直线导线所产生的磁场
下面是非常常见的磁场计算公式推导。如果在一段有限长直线电流旁边 P P P 点,距离直线电流直线距离为 a a a,计算 P P P 点处的磁感应场强 B B B。
(1) 推导方法 1
建立如下的坐标系 O x y Oxy Oxy。那么直线上的电流元就是 I d y Idy Idy。根据 Biot-Savart 定理, P P P 点的磁场为:
B P = μ 0 I 4 π ∫ c b sin θ y 2 + a 2 d y = μ 0 I 4 π ∫ c b a ( y 2 + a 2 ) 3 / 2 d y B_P = \frac{\mu_0 I}{4\pi} \int_c^b \frac{\sin \theta}{y^2 + a^2} dy = \frac{\mu_0 I}{4\pi} \int_c^b \frac{a}{(y^2 + a^2)^{3/2}} dy BP=4πμ0I∫cby2+a2sinθdy=4πμ0I∫cb(y2+a2)3/2ady
其中,对于:
∫ c b d y ( y 2 + a 2 ) 3 / 2 = y a 3 1 + y 2 a 2 ∣ c b \int_c^b \frac{dy}{(y^2 + a^2)^{3/2}} = \frac{y}{a^3 \sqrt{1 + \frac{y^2}{a^2}}} \Big|_c^b ∫cb(y2+a2)3/2dy=a31+a2y2y cb
代入 b b b 和 c c c 的值可以得到:
B P = μ 0 I 4 π a ( cos θ 1 − cos θ 2 ) B_P = \frac{\mu_0 I}{4\pi a} \left( \cos \theta_1 - \cos \theta_2 \right) BP=4πaμ0I(cosθ1−cosθ2)
(2) 推导方法 2
根据:
y = − a ⋅ cos θ sin θ y = -a \cdot \frac{\cos \theta}{\sin \theta} y=−a⋅sinθcosθ
那么对于上式两边同时进行微分:
d y = d ( − a ⋅ cos θ sin θ ) = a sin 2 θ d θ dy = d\left( -a \cdot \frac{\cos \theta}{\sin \theta} \right) = \frac{a}{\sin^2 \theta} d\theta dy=d(−a⋅sinθcosθ)=sin2θadθ
这其中应用到:
d ( cos θ sin θ ) = − ( 1 + cos 2 θ sin 2 θ ) = − 1 sin 2 θ d\left( \frac{\cos \theta}{\sin \theta} \right) = - \left( 1 + \frac{\cos^2 \theta}{\sin^2 \theta} \right) = -\frac{1}{\sin^2 \theta} d(sinθcosθ)=−(1+sin2θcos2θ)=−sin2θ1
那么,由 Biot-Savart 定理:
d y ⃗ × r ⃗ r 3 = d y ⋅ sin θ r 2 = a sin 2 θ d θ ⋅ sin θ ⋅ sin θ a = sin θ d θ a \frac{d\vec{y} \times \vec{r}}{r^3} = \frac{dy \cdot \sin \theta}{r^2} = \frac{a}{\sin^2 \theta} d\theta \cdot \sin \theta \cdot \frac{\sin \theta}{a} = \frac{\sin \theta d\theta}{a} r3dy×r=r2dy⋅sinθ=sin2θadθ⋅sinθ⋅asinθ=asinθdθ
最终积分式变为:
μ 0 4 π ∫ c b d y ⃗ × r ⃗ r 3 = μ 0 I 4 π a ∫ θ 1 θ 2 sin θ d θ \frac{\mu_0}{4\pi} \int_c^b \frac{d\vec{y} \times \vec{r}}{r^3} = \frac{\mu_0 I}{4\pi a} \int_{\theta_1}^{\theta_2} \sin \theta d\theta 4πμ0∫cbr3dy×r=4πaμ0I∫θ1θ2sinθdθ
最终可以得到与上式相同的表达式。
3. 圆环的磁场
电流元可以表示为:
d l = R d θ dl = Rd\theta dl=Rdθ
那么积分:
B 0 = μ 0 4 π ∫ 0 2 π I ⋅ R d θ ⋅ R R 3 = μ 0 I 2 R B_0 = \frac{\mu_0}{4\pi} \int_0^{2\pi} \frac{I \cdot Rd\theta \cdot R}{R^3} = \frac{\mu_0 I}{2R} B0=4πμ0∫02πR3I⋅Rdθ⋅R=2Rμ0I
02 结论
利用基本的 Biot-Savart 定理,可以得到基本的直线和圆环磁场强度的解析解。对于一些复杂的曲线的推导会非常复杂,具体的结果需要通过数值求解来完成。可以利用在 Laplace 数值逆运算的讨论 给出的一些 Python 语言实现的数值积分来完成求解。
比如利用下面的梯形数值积分来验证一下直线磁场计算数值解。
def trapz(f, a, b, N=50):
x = linspace(a, b, N + 1)
y = f(x)
y_right = y[1:]
y_left = y[:-1]
dx = (b - a) / N
T = dx / 2 * sum(y_right + y_left)
return T
1. 对于直线磁场数值求解
假设具体的参数为:
a = 1 , θ 1 = π 4 , θ 2 = 2 π 3 a = 1, \theta_1 = \frac{\pi}{4}, \theta_2 = \frac{2\pi}{3} a=1,θ1=4π,θ2=32π
I = 1 , μ 0 = 4 π × 1 0 − 7 I = 1, \mu_0 = 4\pi \times 10^{-7} I=1,μ0=4π×10−7
直接根据公式:
B = μ 0 I 4 π a ( cos θ 1 − cos θ 2 ) B = \frac{\mu_0 I}{4\pi a} \left( \cos \theta_1 - \cos \theta_2 \right) B=4πaμ0I(cosθ1−cosθ2)
可以得到:
B = 1.20711 × 1 0 − 7 B = 1.20711 \times 10^{-7} B=1.20711×10−7
利用数据进行求解:
c = − a ⋅ cot ( π 4 ) = − 1 c = -a \cdot \cot\left( \frac{\pi}{4} \right) = -1 c=−a⋅cot(4π)=−1
b = − a ⋅ cot ( 2 π 4 ) = 0.57735 b = -a \cdot \cot\left( \frac{2\pi}{4} \right) = 0.57735 b=−a⋅cot(42π)=0.57735
B = μ 0 ⋅ I 4 π ∫ c b a ( y 2 + a 2 ) 3 / 2 d y B = \frac{\mu_0 \cdot I}{4\pi} \int_c^b \frac{a}{(y^2 + a^2)^{3/2}} dy B=4πμ0⋅I∫cb(y2+a2)3/2ady
经过数值积分结果为:
B = 1.207078 × 1 0 − 7 B = 1.207078 \times 10^{-7} B=1.207078×10−7
对比上述结果可以看到结果是非常接近的。
大学物理电磁学——毕奥·萨伐尔定律
soft word 于 2020-06-10 20:03:49 发布
毕奥·萨伐尔定律
公式汇总
一般公式:
d B = μ 0 4 π I d l ⃗ × r ⃗ r 3 = μ 0 4 π I d l sin α r 2 dB = \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{Idl \sin \alpha}{r^2} dB=4πμ0r3Idl×r=4πμ0r2Idlsinα
载流直导线的磁场:
B = μ 0 I 4 π a ( cos α 1 − cos α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1−cosα2)
无限长载流直导线:
B = μ 0 I 2 π a B = \frac{\mu_0 I}{2\pi a} B=2πaμ0I
载流圆线圈轴上的磁场:
B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2
圆心处:
x = 0 , B 0 = μ 0 I 2 R x = 0, \quad B_0 = \frac{\mu_0 I}{2R} x=0,B0=2Rμ0I
通电螺线管:
B = μ 0 n I 2 ( x 2 x 2 2 + R 2 − x 1 x 1 2 + R 2 ) B = \frac{\mu_0 n I}{2} \left( \frac{x_2}{\sqrt{x_2^2 + R^2}} - \frac{x_1}{\sqrt{x_1^2 + R^2}} \right) B=2μ0nI(x22+R2x2−x12+R2x1)
对于无限长的螺线管:
B = μ 0 n I B = \mu_0 n I B=μ0nI
1. 磁现象
-
一切磁现象都源于电荷的运动。
-
一切磁力本质上都是电荷之间的作用力。
一切磁现象都源于电荷运动,磁相互作用的本质就是运动电荷(电流)之间的运动。
2. 毕奥·萨伐尔定律
2.1 电流元
定义:
I d l ⃗ I \vec{dl} Idl
大小为 I d l Idl Idl,方向由线元所在处电流的流向来确定。
目的:用积分法来求出任意形状的磁场分布。
2.2 电流元的磁场
大小:
d B = μ 0 4 π I d l ⃗ × r ⃗ r 3 = μ 0 4 π I d l sin α r 2 dB = \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{Idl \sin \alpha}{r^2} dB=4πμ0r3Idl×r=4πμ0r2Idlsinα
真空磁导率:
μ 0 = 4 π × 1 0 − 7 N ⋅ A − 2 \mu_0 = 4\pi \times 10^{-7} \, \text{N} \cdot \text{A}^{-2} μ0=4π×10−7N⋅A−2
运用积分:
B ⃗ = ∫ d B ⃗ = ∫ μ 0 4 π I d l ⃗ × r ⃗ r 3 \vec{B} = \int d\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r}}{r^3} B=∫dB=∫4πμ0r3Idl×r
解题步骤:
-
建立坐标系。
-
分割电流元。
-
确定电流元的磁场。
-
坐标分解求 d B x dB_x dBx, d B y dB_y dBy, d B z dB_z dBz,然后统一积分变量求出 d B x dB_x dBx, d B y dB_y dBy, d B z dB_z dBz。
-
由 B ⃗ = d B x i ⃗ + d B y j ⃗ + d B z k ⃗ \vec{B} = dB_x \vec{i} + dB_y \vec{j} + dB_z \vec{k} B=dBxi+dByj+dBzk,求总场。
毕奥·萨伐尔定律运用实例
载流直导线的磁场
B = μ 0 I 4 π a ( cos α 1 − cos α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1−cosα2)
其中, a a a 是点到导线的垂直距离, α 1 \alpha_1 α1 是电流入端点与该点与待求点连线之间的夹角。
一般情况:
B = μ 0 I 4 π a ( cos α 1 − cos α 2 ) B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2) B=4πaμ0I(cosα1−cosα2)
无限长载流直导线:
α 1 = 0 , α 2 = π , B = μ 0 I 2 π a \alpha_1 = 0, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{2\pi a} α1=0,α2=π,B=2πaμ0I
半无限长载流直导线(点与其入端平齐):
α 1 = π 2 , α 2 = π , B = μ 0 I 4 π a \alpha_1 = \frac{\pi}{2}, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{4\pi a} α1=2π,α2=π,B=4πaμ0I
半无限长载流直导线:
α 1 = β , α 2 = π , B = μ 0 I 4 π a ( cos β + 1 ) \alpha_1 = \beta, \quad \alpha_2 = \pi, \quad B = \frac{\mu_0 I}{4\pi a} (\cos \beta + 1) α1=β,α2=π,B=4πaμ0I(cosβ+1)
载流导线延长线上任意一点的磁场:
B ⃗ = 0 \vec{B} = 0 B=0
载流圆线圈轴上的磁场
B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2
圆心处:
x = 0 , B 0 = μ 0 I 2 R x = 0, \quad B_0 = \frac{\mu_0 I}{2R} x=0,B0=2Rμ0I
如果是圆弧形的电流:
B 0 = μ 0 I 2 R θ 2 π B_0 = \frac{\mu_0 I}{2R} \frac{\theta}{2\pi} B0=2Rμ0I2πθ
载流密绕直螺线管轴上的磁场
B = μ 0 n I 2 ( x 2 x 2 2 + R 2 − x 1 x 1 2 + R 2 ) B = \frac{\mu_0 n I}{2} \left( \frac{x_2}{\sqrt{x_2^2 + R^2}} - \frac{x_1}{\sqrt{x_1^2 + R^2}} \right) B=2μ0nI(x22+R2x2−x12+R2x1)
对于无限长的螺线管:
B = μ 0 n I B = \mu_0 n I B=μ0nI
运动电荷产生的磁场
运用公式:
B ⃗ = ∫ d B ⃗ = ∫ μ 0 4 π I d l ⃗ × r ⃗ r 3 \vec{B} = \int d\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r}}{r^3} B=∫dB=∫4πμ0r3Idl×r
常见情况:
- 离散运动电荷已知速度,则对一个圆周进行积分:
I = q T I = \frac{q}{T} I=Tq
其中 T T T 是电荷绕一圈的周期。
(-e) 的原因是, I I I 的方向与负电荷运动方向相反。
- 带电圆环已知每秒绕 N N N 转,与之前类似, T = 1 N T = \frac{1}{N} T=N1。
3. 磁距
平面载流线圈的磁距:
p ⃗ m = I S ⃗ \vec{p}_m = I \vec{S} pm=IS
其中, S ⃗ \vec{S} S 的方向就是法向量的方向。
载流线圈轴线上距圆心很远的场可表示为:
B = μ 0 I R 2 2 x 3 = μ 0 I π R 2 2 π x 3 = μ 0 I S ⃗ 2 π x 3 = μ 0 p m 2 π x 3 B = \frac{\mu_0 I R^2}{2x^3} = \frac{\mu_0 I \pi R^2}{2\pi x^3} = \frac{\mu_0 I \vec{S}}{2\pi x^3} = \frac{\mu_0 p_m}{2\pi x^3} B=2x3μ0IR2=2πx3μ0IπR2=2πx3μ0IS=2πx3μ0pm
考虑方向:
B ⃗ = μ 0 p ⃗ m 2 π x 3 \vec{B} = \frac{\mu_0 \vec{p}_m}{2\pi x^3} B=2πx3μ0pm
当圆电流的半径很小或者讨论远离圆电流处的磁场分布时,把圆电流称作磁偶极子,产生的磁场称为磁偶极磁场。
大学物理之毕奥·萨伐尔定律推导
映之123 于 2022-02-13 12:11:22 发布
毕奥·萨伐尔定律
d B = μ 0 4 π I d l ⃗ × r ⃗ r 2 dB = \frac{\mu_0}{4\pi} \frac{I d\vec{l} \times \vec{r}}{r^2} dB=4πμ0r2Idl×r
其中, e ⃗ r \vec{e}_r er 是从电流元指向参考点方向的单位矢量, μ 0 \mu_0 μ0 是真空磁导率。电流元产生的磁场的磁感应强度 d B dB dB 垂直于 I d l ⃗ I d\vec{l} Idl 与 e ⃗ r \vec{e}_r er 组成的平面,并满足右手螺旋定则。
电流元
定义:
I d ⃗ l I \vec{d}l Idl
为电流元。大小为 I d l I dl Idl, d ⃗ l \vec{d}l dl 的方向由线元所在处电流的流向来确定。
目的:用积分法来求出任意形状的磁场分布。
电流元的磁场
大小:
d B = μ 0 4 π I d ⃗ l × r ⃗ r 3 = μ 0 4 π I d l sin θ r 2 dB = \frac{\mu_0}{4\pi} \frac{I \vec{d}l \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I dl \sin \theta}{r^2} dB=4πμ0r3Idl×r=4πμ0r2Idlsinθ
载流直导线的磁场
长为 l l l 的载流直导线,其中电流为 I I I,计算距离直导线为 r 0 r_0 r0 的点 P P P 的磁感应强度。
涉及到的数学公式
cot θ = cos θ sin θ \cot \theta = \frac{\cos \theta}{\sin \theta} cotθ=sinθcosθ
( cot θ ) ′ = ( cos θ ) ′ ( sin θ ) − cos θ ( sin θ ) ′ ( sin 2 θ ) = − 1 sin 2 θ (\cot \theta)' = \frac{(\cos \theta)'}{(\sin \theta)} - \frac{\cos \theta (\sin \theta)'}{(\sin^2 \theta)} = -\frac{1}{\sin^2 \theta} (cotθ)′=(sinθ)(cosθ)′−(sin2θ)cosθ(sinθ)′=−sin2θ1
l = r 0 cot ( π − θ ) = − r 0 cot θ l = r_0 \cot (\pi - \theta) = -r_0 \cot \theta l=r0cot(π−θ)=−r0cotθ
磁感应强度的积分推导
B = ∫ d B = μ 0 4 π ∫ C D I d l sin θ r 2 B = \int dB = \frac{\mu_0}{4\pi} \int_{C}^{D} \frac{I dl \sin \theta}{r^2} B=∫dB=4πμ0∫CDr2Idlsinθ
d l d θ = l ′ = − r 0 ( cot θ ) ′ = r 0 sin 2 θ \frac{dl}{d\theta} = l' = -r_0 (\cot \theta)' = \frac{r_0}{\sin^2 \theta} dθdl=l′=−r0(cotθ)′=sin2θr0
r = r 0 sin ( π − θ ) = r 0 sin θ r = \frac{r_0}{\sin (\pi - \theta)} = \frac{r_0}{\sin \theta} r=sin(π−θ)r0=sinθr0
所以:
B = μ 0 I 4 π ∫ θ 1 θ 2 sin θ r 0 2 d θ = μ 0 I 4 π r 0 ( cos θ 1 − cos θ 2 ) B = \frac{\mu_0 I}{4\pi} \int_{\theta_1}^{\theta_2} \frac{\sin \theta}{r_0^2} d\theta = \frac{\mu_0 I}{4\pi r_0} (\cos \theta_1 - \cos \theta_2) B=4πμ0I∫θ1θ2r02sinθdθ=4πr0μ0I(cosθ1−cosθ2)
无限长载流直导线
则 θ 1 = 0 \theta_1 = 0 θ1=0, θ 2 = π \theta_2 = \pi θ2=π
B = μ 0 I 2 π r 0 B = \frac{\mu_0 I}{2\pi r_0} B=2πr0μ0I
扩展知识
磁现象
-
一切磁现象都源于电荷的运动。
-
一切磁力本质上都是电荷之间的作用力。
宇宙间四种基本作用力
-
引力:又称重力,是四个基本相互作用中最弱的,但作用范围最大。广义相对论中认为引力是由于弯曲的空间和时间。
-
电磁力:世上大部分物质都具有电磁力,磁与电是电磁力的一种表现模式。
-
强相互作用力:又称为强核力,所有物质由原子构成,原子由电子和原子核组成,原子核由中子和质子组成。
-
弱相互作用力:又称为弱核力,是核能的另一种来源,主要是核子产生的天然辐射,四种相互作用力中,弱相互作用力只比引力强一点。
via:
-
电磁场公式大全-CSDN博客
https://blog.csdn.net/MamiyaHasaki/article/details/106891976 -
基本磁场计算公式的简单推导_有限长载流直导线的磁场公式-CSDN博客
https://blog.csdn.net/zhuoqingjoking97298/article/details/108786790 -
大学物理电磁学——毕奥·萨伐尔定律_毕奥萨伐尔定律-CSDN博客
https://blog.csdn.net/weixin_45864618/article/details/106672456 -
大学物理之毕奥·萨伐尔定律推导_毕萨定律是怎么推出来的-CSDN博客
https://blog.csdn.net/zhongzhongge/article/details/122906537