基本磁场计算公式的简单推导

作者:卓晴博士,清华大学自动化系
更新时间:2020-09-25 Friday
 

  对于导线周围的磁场分布,可以从比奥-萨伐尔(Biot-Savart)定理出发,推导出任意电流导线、或者导体周围的磁感应强度。讨论这个问题主要是为了能够对 电磁炉中的螺旋线圈 周围测磁场进行数值分析研究。

00基础理论

1.毕奥-萨伐尔定律

  毕奥-萨伐尔定理(Biot-Savart Law): 电流元 I d l ⃗ Id\vec l Idl 在空间某点P处产生的磁感应强度 d B ⃗ d\vec B dB 的大小与电流元 I d l ⃗ Id\vec l Idl 的大小成正比,与电流元 I d l ⃗ Id\vec l Idl 所在处到P点的位置矢量和电流元 I d l ⃗ Id\vec l Idl 之间的夹角的正弦成正比,而与电流元 I d l ⃗ Id\vec l Idl 到P点的距离的平方成反比。

d B ⃗ = μ 0 4 π ⋅ I d l ⃗ × r ⃗ r 3 = μ 0 4 π ⋅ I d l ⋅ sin ⁡ θ r 2 d\vec B = {{\mu _0 } \over {4\pi }} \cdot {{Id\vec l \times \vec r} \over {r^3 }} = {{\mu _0 } \over {4\pi }} \cdot {{Idl \cdot \sin \theta } \over {r^2 }} dB =4πμ0r3Idl ×r =4πμ0r2Idlsinθ

B ⃗ = ∫ L μ 0 4 π ⋅ I d l × e ⃗ r r 2 \vec B = \int_L^{} {{{\mu _0 } \over {4\pi }} \cdot {{Idl \times \vec e_r } \over {r^2 }}} B =L4πμ0r2Idl×e r

  其中 I I I是源电流, L L L是积分路径。 d l dl dl是源电流危险线元素, e ⃗ r \vec e_r e r是电流元到待求场点的单位向量。

μ 0 = 4 π × 1 0 − 7 T m / A \mu _0 = 4\pi \times 10^{ - 7} Tm/A μ0=4π×107Tm/A是真空磁导率值。

▲ 毕奥-萨伐尔定律

▲ 毕奥-萨伐尔定律

01基本磁场推导

2.直线导线所产生的磁场

  下面是非常常见到的磁场计算公式推导。如果在一段有限长直线电流旁边P点,距离直线电流直线距离为a,计算P点出的磁感应场强B。

(1) 推导方法1

  建立如下的坐标系 O x y Oxy Oxy。那么直线上的电流元就是 I d y Idy Idy。那么根据Biot-Savart定理,P点的磁场为:

▲ 有限长直线旁边的磁场

▲ 有限长直线旁边的磁场

B P = μ 0 I 4 π ∫ c b sin ⁡ θ ( y 2 + a 2 ) d y = μ 0 I 4 π ∫ c b a y 2 + a 2 ( y 2 + a 2 ) d y B_P = {{\mu _0 I} \over {4\pi }}\int_c^b {{{\sin \theta } \over {\left( {y^2 + a^2 } \right)}}dy} = {{\mu _0 I} \over {4\pi }}\int_c^b {{{{a \over {\sqrt {y^2 + a^2 } }}} \over {\left( {y^2 + a^2 } \right)}}dy} BP=4πμ0Icb(y2+a2)sinθdy=4πμ0Icb(y2+a2)y2+a2 ady = μ 0 I ⋅ a 4 π ∫ c b d y ( y 2 + a 2 ) 3 2 = μ 0 I ⋅ a 4 π ⋅ y a 3 1 + y 2 a 2 ∣ c b = {{\mu _0 I \cdot a} \over {4\pi }}\int_c^b {{{dy} \over {\left( {y^2 + a^2 } \right)^{{3 \over 2}} }}} = {{\mu _0 I \cdot a} \over {4\pi }} \cdot \left. {{y \over {a^3 \sqrt {1 + {{y^2 } \over {a^2 }}} }}} \right|_c^b =4πμ0Iacb(y2+a2)23dy=4πμ0Iaa31+a2y2 ycb

  其中对于: ∫ c b d y ( y 2 + a 2 ) 3 2 \int_c^b {{{dy} \over {\left( {y^2 + a^2 } \right)^{{3 \over 2}} }}} cb(y2+a2)23dy
  的积分,使用simpy库函数进行推导。

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY                     -- by Dr. ZhuoQing 2020-09-25
#
# Note:
#============================================================
from headm import *
from sympy import symbols,Integral, oo, exp, integrate
from sympy import print_latex, sin, sqrt
x, y, a= symbols('x, y, a')
ixs = integrate(1/(x**2+a**2)/sqrt(x**2+a**2), x)
#------------------------------------------------------------
print_latex(ixs)
tspec('msg2latex')
#------------------------------------------------------------
#        END OF FILE : TEST1.PY
#============================================================

  将b,c的值代入上述可以得到:
B p = μ 0 I 4 π a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) B_p = {{\mu _0 I} \over {4\pi a}}\left( {\cos \theta _1 - \cos \theta _2 } \right) Bp=4πaμ0I(cosθ1cosθ2)

(2) 推导方法2

  根据: y = − a ⋅ cos ⁡ θ sin ⁡ θ y = - a \cdot {{\cos \theta } \over {\sin \theta }} y=asinθcosθ
  那么对于上式两边同时进行微分:
d y = d ( − a cos ⁡ θ sin ⁡ θ ) = a sin ⁡ 2 θ d θ dy = d\left( { - a{{\cos \theta } \over {\sin \theta }}} \right) = {a \over {\sin ^2 \theta }}d\theta dy=d(asinθcosθ)=sin2θadθ
  这其中应用到: d ( cos ⁡ θ sin ⁡ θ ) = − ( 1 + cos ⁡ 2 θ sin ⁡ 2 θ ) = − 1 sin ⁡ 2 θ d\left( {{{\cos \theta } \over {\sin \theta }}} \right) = - \left( {1 + {{\cos ^2 \theta } \over {\sin ^2 \theta }}} \right) = {{ - 1} \over {\sin ^2 \theta }} d(sinθcosθ)=(1+sin2θcos2θ)=sin2θ1

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY                     -- by Dr. ZhuoQing 2020-09-25
#
# Note:
#============================================================
from headm import *
from sympy import symbols,Integral, oo, exp, integrate
from sympy import print_latex, sin, cos, sqrt, diff
x, y, a= symbols('x, y, a')
ixs = diff(cos(x)/sin(x),x)
#------------------------------------------------------------
print_latex(ixs)
tspec('msg2latex')
#------------------------------------------------------------
#        END OF FILE : TEST1.PY
#============================================================

  那么,由Biot-Savart定理:

d y ⃗ × r ⃗ r 3 = d y ⋅ sin ⁡ θ r 2 = a sin ⁡ 2 θ d θ ⋅ sin ⁡ θ ( a sin ⁡ θ ) 2 = sin ⁡ θ d θ a {{d\vec y \times \vec r} \over {r^3 }} = {{dy \cdot \sin \theta } \over {r^2 }} = {{{a \over {\sin ^2 \theta }}d\theta \cdot \sin \theta } \over {\left( {{a \over {\sin \theta }}} \right)^2 }} = {{\sin \theta d\theta } \over a} r3dy ×r =r2dysinθ=(sinθa)2sin2θadθsinθ=asinθdθ

  最终积分式变为: μ 0 4 π ∫ c b d y ⃗ × r ⃗ r 3 = μ 0 I 4 π a ∫ θ 1 θ 2 sin ⁡ θ d θ {{\mu _0 } \over {4\pi }}\int_c^b {{{d\vec y \times \vec r} \over {r^3 }}} = {{\mu _0 I} \over {4\pi a}}\int_{\theta _1 }^{\theta _2 } {\sin \theta d\theta } 4πμ0cbr3dy ×r =4πaμ0Iθ1θ2sinθdθ
  最终可以得到与上式相同的表达式。

3.圆环的磁场

  电流元可以表示为:
d l = R d θ dl = Rd\theta dl=Rdθ

I d l ⃗ × r ⃗ = I ⋅ R d θ ⋅ R Id\vec l \times \vec r = I \cdot Rd\theta \cdot R Idl ×r =IRdθR

  那么积分: B 0 = μ 0 4 π ∫ 0 2 π I ⋅ R d θ ⋅ R R 3 = μ 0 I 2 R B_0 = {{\mu _0 } \over {4\pi }}\int_0^{2\pi } {{{I \cdot Rd\theta \cdot R} \over {R^3 }}} = {{\mu _0 I} \over {2R}} B0=4πμ002πR3IRdθR=2Rμ0I

▲ 圆环磁场

▲ 圆环磁场

02结论


  用基本的Biot-Savart定理,可以得到基本的直线和圆环磁场强度的解析解。那么对于一些复杂的曲线的推导就会非常复杂,具体的结果需要通过数值求解来完成。

  可以利用在 Laplace数值逆运算的讨论 给出的一些Python语言实现的数值积分来完成求解。

  比如利用下面的梯形数值积分来验证一下直线磁场计算数值解。

def trapz(f, a, b, N=50):
    x = linspace(a, b, N+1)
    y = f(x)
    y_right = y[1:]
    y_left = y[:-1]
    dx = (b-a) / N
    T = dx/2 * sum(y_right + y_left)
    return T

1.对于直线磁场数值求解

  假设具体的参数为: a = 1 , θ 1 = π 4 , θ 2 = 2 π 3 a = 1,\theta _1 = {\pi \over 4},\theta _2 = {2\pi \over 3} a=1,θ1=4π,θ2=32π
I = 1 ,    μ 0 = 4 π × 1 0 − 7 I = 1,\,\,\mu _0 = 4\pi \times 10^{ - 7} I=1,μ0=4π×107

  直接根据公式: B = μ 0 I 4 π a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) B = {{\mu _0 I} \over {4\pi a}}\left( {\cos \theta _1 - \cos \theta _2 } \right) B=4πaμ0I(cosθ1cosθ2)
  可以得到: B = 1.20711 × 1 0 − 7 B = 1.20711 \times 10^{ - 7} B=1.20711×107

  利用数据进行求解:
c = − a ⋅ c t g ( π 4 ) = − 1 c = - a \cdot ctg\left( {{\pi \over 4}} \right) = - 1 c=actg(4π)=1
b = − a ⋅ c t g ( 2 π 4 ) = 0.57735 b = - a \cdot ctg\left( {{{2\pi } \over 4}} \right) = 0.57735 b=actg(42π)=0.57735

B = μ 0 ⋅ I 4 π ∫ c b a ( y 2 + a 2 ) 3 2 d y B = {{\mu _0 \cdot I} \over {4\pi }}\int_c^b {{a \over {\left( {y^2 + a^2 } \right)^{{3 \over 2}} }}dy} B=4πμ0Icb(y2+a2)23ady

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST2.PY                     -- by Dr. ZhuoQing 2020-09-19
#
# Note:
#============================================================
from headm import *
def trapz(f, a, b, N=50):
    x = linspace(a, b, N+1)
    y = f(x)
    y_right = y[1:]
    y_left = y[:-1]
    dx = (b-a) / N
    T = dx/2 * sum(y_right + y_left)
    return T
def f(x):
   return 1/(x**2+1)**(3/2)
intr = trapz(f, -1, 0.57735, 100)
m0=4*pi*10**-7
result = m0*intr/4/pi
printf(result)
#------------------------------------------------------------
#        END OF FILE : TEST2.PY
#============================================================

  经过数值积分结果为:
B = 1.207078 × 1 0 − 7 B = 1.207078 \times 10^{ - 7} B=1.207078×107

  对比上述结果可以看到结果是非常接近的。


■ 相关文献链接:

● 相关图表链接:

### 回答1: 物理学中磁场相关的一些重要公式如下: 1. 磁感应强度(B): B = μ * H 其中μ表示磁导率,H表示磁场强度。 2. 电流密度(J): J = σ * E 其中σ表示电导率,E表示电场强度。 3. Ampere定律:∮B⋅dl=μI 其中dl表示小线段,I表示环绕线圈的电流。 4. Faraday定律:∮E⋅dl=-dΦ/dt 其中Φ表示磁通量,t表示时间。 5. Maxwell方程: ∇ x B = μ * J + ∂E/∂t ∇ x E = - ∂B/∂t 这些公式是磁学中的基本公式,是理解磁场的重要工具。 ### 回答2: 大学物理中,涉及磁场的相关公式主要有以下几个: 1. 安培环路定理:该定理用于计算磁场的大小和方向,它表明一个闭合回路上各个部分的磁场的总和等于回路内的电流乘以真空中的磁常数。这个公式可以表示为B = μ₀ * I / (2πr),其中B是磁场的大小,I是电流的大小,r是从回路中心到任意一点的距离,μ₀是真空中的磁常数。 2. 毕奥-萨伐尔定律:该定律描述了通过一条无限长直导线产生的磁场的大小与距离之间的关系。公式可以表示为B = (μ₀ * I) / (2πr),其中B是磁场的大小,I是电流的大小,r是离导线距离的大小,μ₀是真空中的磁常数。 3. 洛伦兹力公式:该公式用于计算电荷在磁场中受到的力的大小和方向。公式可以表示为F = q * (v × B),其中F是力的大小,q是电荷的大小,v是电荷的速度,B是磁场的大小,×表示向量叉乘运算。 这些公式是研究磁场及其作用的基础,它们在解决有关磁场的问题中起到了重要的作用。在物理学和工程等领域,人们使用这些公式来计算和预测磁场的性质,从而解决各种实际问题。 ### 回答3: 大学物理中,磁场相关公式包括洛伦兹力公式、安培环路定理、比奥-萨伐尔定律和磁感应强度的计算公式。 洛伦兹力公式描述了磁场对带电粒子的作用力。当一个电荷q以速度v在磁场B中运动时,磁场对该电荷的作用力F由洛伦兹力公式给出:F = qv × B。其中,×表示矢量叉乘,表示力的方向垂直于速度v和磁场B的平面。 安培环路定理说明了磁场的产生和变化与电流之间的关系。该定理表明,通过一个闭合回路的磁场的总磁感应强度的改变率等于通过该回路的电流的总和乘以真空中的磁导率μ₀:∮B·ds = μ₀I,其中∮表示回路沿闭合路径的线积分,B表示磁感应强度,ds表示微元长度,I表示电流。 比奥-萨伐尔定律描述了生产磁场的连续直导线的磁感应强度。根据该定律,由一条无限长直导线产生的磁场,与离导线的距离r成反比,与电流I线性相关,由此可以得到磁感应强度公式:B = (μ₀I)/(2πr),其中μ₀是真空中的磁导率。 磁感应强度的计算公式可以通过包围导线的安培环路定理推导得到。当安培环路的形状从直导线变为圆环时,可得到磁感应强度B与导线的电流I和环绕导线的圆环半径r之间的关系:B = (μ₀I)/(2πr)。这个公式可以用于计算导线周围的磁场强度。 综上所述,以上磁场相关的公式涵盖了磁场对带电粒子的作用力、磁场与电流之间的关系以及磁感应强度的计算。在学习和应用物理中,掌握和理解这些公式对于解决与磁场相关的问题是非常重要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值