- 《Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification》2016
**要解决的问题:**通过适当地共享相关信息来提高多项预测任务的泛化性能。
**创新点:**作者提出了一种设计紧凑型多任务深度学习架构的自动方法。开始采用一个薄的多层网络,并在训练过程中以贪心的方式动态地扩展它。通过反复执行,它创建了一个树状的深层架构,类似的任务驻留在相同的分支中,直到顶层。关于涉及面部和服装属性的人物属性分类任务的评估表明,所提出的方法产生的模型是快速,紧凑的。
任务分组的可视化验证:
论文从一个较瘦的网络开始,逐渐加粗。任务间进行选择性共享,挖掘那些任务之间更相关。相似度小的任务分割的早,共享的特征少。惩罚相同分支中不相似的任务。
论文的目的应该是通过探索不同任务之间的相关性,来进行分支,也就是没有相关性的任务进行多任务训练效果可能会变得不好,上图是作者给出的celebA的任务分组情况。