矩阵的特征值、特征向量、特征子空间

特征值、特征向量的定义

如果对n阶方阵A,有
λ A = λ X \lambda A = \lambda X λA=λX
那么,称 λ \lambda λ称为A的特征值, X X X称为A关于特征值 λ \lambda λ的特征向量.

特征子空间定义

λ A = λ X \lambda A = \lambda X λA=λX可以得到 ( λ E − A ) X = 0 (\lambda E-A)X=0 (λEA)X=0,即:
λ A = λ X ⇒ ( λ E − A ) X = 0 \lambda A=\lambda X \Rightarrow (\lambda E-A)X=0 λA=λX(λEA)X=0

( λ E − A ) X = 0 ( ∗ λ ) (\lambda E - A)X= 0 \qquad (*_{\lambda}) (λEA)X=0(λ)

X ≠ 0 X \neq 0 X=0,即齐次线性方程组 ( ∗ λ ) (*_{\lambda}) (λ)有非零解,则:
   ⟺    ∣ λ E − A ∣ = 0 \iff \qquad \qquad |\lambda E - A| = 0 λEA=0
方程组 ( ∗ λ ) (*_{\lambda}) (λ)的解空间称为对应于 λ \lambda λ的特征子空间.

特征多项式

设$A = \left[\begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \vdots & \vdots & & \vdots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{matrix} \right] $,则称
∣ λ E − A ∣ = [ λ − a 11 a 12 ⋯ a 1 n a 21 λ − a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ λ − a n n ] |\lambda E - A| = \left[\begin{matrix} \lambda - a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda - a_{22} & \cdots & a_{2n} \\ \vdots & \vdots && \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda-a_{nn} \end{matrix}\right] λEA=λa11a21an1a12λa22an2a1na2nλann
为矩阵A的特征多项式.

特征值、特征向量的本质

假设有一个矩阵 A A A表示一张图像, 对这张图象进行特征提取得到的特征是一个个向量, 这些向量就是对应矩阵 A A A的特征向量, 这些特征的重要程度不尽相同, 表示重要程度的数值即是对应特征向量的特征值.

从数学角度上讲, 对于一个给定的矩阵 A A A, 如果存在一个向量 v v v, 使得矩阵 A A A作用于 v v v之后( A v Av Av), 得到的新向量和 v v v仍然保持在同一条直线上, 即是说这个变换只是改变向量 v v v的长度而不改变它的方向或者让向量 v v v的方向与原来的方向相反, 那么这个向量即是 A A A的特征向量, 对于每一个特征向量都有一个与之相对应的特征值.

简单的来说, 特征向量就是在矩阵 A A A描述的线性变换中保持不变的向量.

一个变换(一个矩阵)可以由其特征值和特征向量完全表述,这是因为从数学上看, 这个矩阵所有的特征向量组成了这个向量空间的一组基底. 而矩阵作为变换的本质就是把一个基底下的东西变换到另一个基底表示的空间中.

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值