e是一个重要的常数,但是我一直不知道,它的真正含义是什么。
它不像π。大家都知道,π代表了圆的周长与直径之比3.14159,可是如果我问你,e代表了什么。你能回答吗?
维基百科说:
“e是自然对数的底数。”
但是,你去看"自然对数",得到的解释却是:
“自然对数是以e为底的对数函数,e是一个无理数,约等于2.718281828。”
这就构成了循环定义,完全没有说e是什么。数学家选择这样一个无理数作为底数,还号称这种对数很"自然",这难道不是很奇怪的事情吗?
那么e到底代表什么,有什么意义呢?简单说,e就是增长的极限。
下面就是它的解释。
假定有一种单细胞生物,它每过24小时分裂一次。
那么很显然,这种生物的数量,每天都会翻一倍。今天是1个,明天就是2个,后天就是4个。我们可以写出一个增长数量的公式:
上式中的x就表示天数。这种生物在x天的总数,就是2的x次方。这个式子可以被改成下面这样:
g
r
o
w
t
h
=
2
x
growth=2^x
growth=2x
其中,1表示原有数量,100%表示单位时间内的增长率。
我们继续假定:每过12个小时,也就是分裂进行到一半的时候,新产生的那半个细胞已经可以再次分裂了。
因此,一天24个小时可以分成两个阶段,每一个阶段都在前一个阶段的基础上增长50%。
g
r
o
w
t
h
=
1
∗
(
1
+
1
/
2
)
∗
(
1
+
1
/
2
)
growth=1*(1+1/2)*(1+1/2)
growth=1∗(1+1/2)∗(1+1/2)
当这一天结束的时候,我们一共得到了2.25个细胞。其中,1个是原有的,1个是新生的,另外的0.25个是新生细胞分裂到一半的。
如果我们继续修改假设,这种细胞每过8小时就具备独立分裂的能力,也就是将1天分成3个阶段。
g
r
o
w
t
h
=
1
∗
(
1
+
1
/
3
)
∗
(
1
+
1
/
3
)
∗
(
1
+
1
/
3
)
growth=1*(1+1/3)*(1+1/3)*(1+1/3)
growth=1∗(1+1/3)∗(1+1/3)∗(1+1/3)
那么,最后我们就可以得到大约2.37个细胞。
很自然地,如果我们进一步设想,这种分裂是连续不断进行的,新生细胞每分每秒都具备继续分裂的能力,那么一天最多可以得到多少个细胞呢?
g
r
o
w
t
h
=
1
∗
(
1
+
1
/
n
)
n
growth=1*(1+1/n)^n
growth=1∗(1+1/n)n
当n趋向无限时,这个式子的极值等于2.718281828…。
因此,当增长率为100%保持不变时,我们在单位时间内最多只能得到2.71828个细胞。数学家把这个数就称为e,它的含义是单位时间内,持续的翻倍增长所能达到的极限值。
这个值是自然增长的极限,因此以e为底的对数,就叫做自然对数。
有了这个值以后,计算银行的复利就非常容易。
假定有一家银行,每年的复利是100%,请问存入100元,一年后可以拿多少钱?
回答就是271.828元,等于100个e。
e在数学中是代表一个数的符号,其实还不限于经济学领域。在大自然中,建构,呈现的形状,双曲线面积及微积分教科书、伯努利家族等都有所涉及。