-1.目标视觉跟踪(visual object tracking),根据目标的跟踪方式,跟踪一般可以分为两大类:生产(generative)模型方法和判别(discriminative)模型方法。生成类方法在当前帧对目标区域建模,下一帧寻找与模型最相似的区域就是预测位置,如卡尔曼滤波,粒子滤波,mean-shift等。目前比较流行的是判别类方法,也叫跟踪检测(tracking-by-detection),当前帧以目标区域为正样本,背景区域为负样本用来训练分类器,下一帧用训练好的分类器找最优区域,经典的判别类方法有Struck和TLD等。最近几年相关滤波方法如CF,KCF/DCF,CN,DSST也比较火。通常目标跟踪主要面临的难点有:外观变化,光照变化,快速运动,运动模糊,背景干扰等。
-2.Online Object Tracking: A Benchmark
论文工作主要有三部分:数据集,代码库,鲁棒性评估。论文主要从表示方式,搜索机制和模型更新三个方面对近年来的跟踪算法进行回顾。参与评估的算法包括:Struck,TLD等经典算法。
包含重新检测模块的TLD跟踪器在长序列的跟踪中效果更好;基于密集抽样的跟踪器(Struck,TLD,CXT)对目标快速运动时效果表现更好;Struck,SCM,TLD,LSK和ASLA等跟踪器的结构化学习和局部稀疏表示对解决遮挡问题效果较好,并且SCM,ASLA和LSK的局部稀疏表示比MTT和L1APG的全局稀疏表示模版更加有效;具有仿射运动模型的跟踪器(如ASLA和SCM)通常比像