目标跟踪算法小结(一)

本文总结了目标跟踪算法的分类,包括生成模型和判别模型,并重点探讨了判别类方法,如Struck和TLD。介绍了Online Object Tracking基准论文,强调了数据集、代码库和鲁棒性评估的重要性。KCF作为一种高速跟踪方法,利用HOG特征和核函数提高效率,但也存在对尺度变化和遮挡处理不佳的问题。最后,提到了基于颜色判别式的跟踪方法,适用于颜色稳定的目标场景,但在遮挡和尺度变化下表现不佳。
摘要由CSDN通过智能技术生成

-1.目标视觉跟踪(visual object tracking),根据目标的跟踪方式,跟踪一般可以分为两大类:生产(generative)模型方法和判别(discriminative)模型方法。生成类方法在当前帧对目标区域建模,下一帧寻找与模型最相似的区域就是预测位置,如卡尔曼滤波,粒子滤波,mean-shift等。目前比较流行的是判别类方法,也叫跟踪检测(tracking-by-detection),当前帧以目标区域为正样本,背景区域为负样本用来训练分类器,下一帧用训练好的分类器找最优区域,经典的判别类方法有Struck和TLD等。最近几年相关滤波方法如CF,KCF/DCF,CN,DSST也比较火。通常目标跟踪主要面临的难点有:外观变化,光照变化,快速运动,运动模糊,背景干扰等。

-2.Online Object Tracking: A Benchmark
论文工作主要有三部分:数据集,代码库,鲁棒性评估。论文主要从表示方式,搜索机制和模型更新三个方面对近年来的跟踪算法进行回顾。参与评估的算法包括:Struck,TLD等经典算法。
包含重新检测模块的TLD跟踪器在长序列的跟踪中效果更好;基于密集抽样的跟踪器(Struck,TLD,CXT)对目标快速运动时效果表现更好;Struck,SCM,TLD,LSK和ASLA等跟踪器的结构化学习和局部稀疏表示对解决遮挡问题效果较好,并且SCM,ASLA和LSK的局部稀疏表示比MTT和L1APG的全局稀疏表示模版更加有效;具有仿射运动模型的跟踪器(如ASLA和SCM)通常比像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值