多模态向量检索技术(Multimodal Vector Retrieval)是指通过将不同类型的输入数据(如文本、图像、音频、视频等)转化为相应的高维向量,并在向量空间中进行相似性检索的技术。这种技术在处理多模态数据(例如图文结合、音频与视频等)时尤为重要,常用于推荐系统、搜索引擎、语义搜索和内容理解等应用场景。
核心概念与流程
-
多模态数据表示:
- 多模态数据通常包括文本、图像、音频、视频等不通类型的数据。为了在同一个空间中进行检索,必须将所有模态的数据映射到同一向量空间中。
-
向量化表示:
- 各种模态的数据通过深度学习模型(如卷积神经网络 CNN、循环神经网络 RNN、Transformer 等)转换为高维向量表示。例如,文本可以通过自然语言处理的嵌入模型(如 BERT、GPT),图像可以通过卷积神经网络(如 ResNet、VGG)提取特征向量。
-
共同向量空间(Joint Embedding Space):
- 通过多模态对齐技术(Cross-modal alignment)ÿ