Cherry Studio搭建本地知识库,结合DeepSeek实现RAG

CherryStudio

CherryStudio 简介

CherryStudio 是一款集多模型对话、知识库管理、AI 绘画、翻译等功能于一体的全能 AI 助手平台。 CherryStudio 的高度自定义的设计、强大的扩展能力和友好的用户体验,使其成为专业用户和 AI 爱好者的理想选择。无论是零基础用户还是开发者,都能在 CherryStudio 中找到适合自己的AI功能,提升工作效率和创造力。

CherryStudio

今天就体验一下 CherryStudio 搭建本地知识库,并使用 DeepSeek 实现 RAG 功能。

多数据源知识库

环境准备

在搭建本地知识库前,需要确保以下环境准备到位:

  • 操作系统要求:支持 Windows、macOS、Linux 平台。
  • 安装 Cherry Studio
    1. 前往 Cherry Studio 官方网站 下载最新版本客户端。
    2. 按照安装向导完成部署。

模型配置

知识库需要配置嵌入模型,而实现 RAG 需要使用到大模型如 DeepSeek-R1,为了方便,我们可以直接使用硅基流动提供的 API 能力,毕竟点击新注册的账号有免费的 2000W Tokens 还没用完。

硅基流动

注册之后可以复制出来API Key,粘贴到Cherry Studio中去。

复制出来API Key

在 Cherry Studio 设置->模型服务->硅基流动,按如下顺序进行配置:

  1. 正确配置硅基流动的配置: API 地址【https://api.siliconflow.cn】和 API Key【sk-a·············bcqb】,如果有其他模型的 API Key 也可以直接选择其他模型。
  2. 选择嵌入模型:用于向量化知识,并存入向量数据库,免费的嵌入模型可以用 BAAI/bge-m3,为了效果更好可以选择付费的 Pro/BAAI/bge-m3
  3. 选择对话模型:用于 RAG 功能实现对话,我们选择当前 DeepSeek-R1 或 DeepSeek-V3。

Cherry Studio设置模型

本地知识创建

1、新建知识库

点击 Cherry Studio 左侧知识库按钮,进入知识库管理页面,点击添加按钮新建知识库。

添加知识库

新建知识库

2、添加文件

支持拖拽添加本地文件,也可以添加本地文件目录、网址、网站或者文本。

添加本地文件

3、添加网址或者网站

可以将网络上的内容添加到知识库中,如某一篇博客内容,也可以将一个网站进行添加,如将本人博客网站添加到知识库,需要注意的是正确填写网站的站点地图

添加网址或者网站

4、搜索知识库

可以在本地知识库中进行内容搜索,能够检索到相关内容片段,这些内容片段后面通过 RAG 技术,将作为提问的上下文传给 LLM。

搜索知识库

结合DeepSeek实现RAG

RAG (Retrieval-Augmented Generation) 是一种将信息检索和生成结合起来的技术架构。在自然语言处理领域,RAG 通过检索相关的外部知识库内容,结合生成式模型生成最终的答案,能够极大地提升模型的回答准确性和丰富性。

本地知识库的搭建则是 RAG 技术的重要部分,利用 Cherry Studio 等平台,可以便捷地实现这一过程。

1、选择知识库

进行提问之前可以选择要检索的知识库。

选择知识库

2、进行提问

可以看到大模型回答内容时参考了知识库中本人网站的内容:

进行提问

常见问题与解决方案

Q: Cherry Studio 能否支持动态更新数据?

A: 支持。可以增量更新文档,系统会自动重建索引。

Q: 是不是需要联网才能使用?

A: 搭建本地知识库支持完全离线运行,对话模型需要联网。

Q: Cherry Studio 的检索速度如何?

自动重建索引。

Q: 是不是需要联网才能使用?

A: 搭建本地知识库支持完全离线运行,对话模型需要联网。

Q: Cherry Studio 的检索速度如何?

A: 对于中小规模知识库,其内置检索引擎性能较优。此外,结合向量化检索技术可以进一步提升速度。

### 如何在 Cherry Studio 平台实现检索增强生成 (RAG) #### 使用 Cherry Studio 实现 RAG 的基本流程 为了在 Cherry Studio实现检索增强生成(Retrieval-Augmented Generation, RAG),需要集成合适的模型并配置相应的参数来支持知识库查询和文本生成功能。具体操作如下: - **准备阶段** 配置 API 地址与密钥,在 Cherry Studio 中添加自定义模型(如 DeepSeek-R1),用于构建知识库[^1]。 - **选择适合的模型组合** 对于更好的性能表现,可以考虑使用 bge-m3 模型配合 Qwen2:7b 或者 llama3.2:latest 进行实验对比,以找到最适合应用场景需求的方案[^2]。 - **建立向量数据库** 基于 BGE-M3 向量模型创建私有知识库,这一步骤对于后续的信息检索至关重要。通过该模型能够有效地将文档转化为高维空间中的向量表示形式,从而便于快速准确地定位相关内容片段[^3]。 - **实施 RAG 流程** 当上述准备工作完成后,则可按照以下方式执行 RAG: - 用户输入查询请求; - 系统利用预训练的语言理解能力解析用户的意图,并将其转换成结构化的搜索条件; - 接着调用之前设置好的索引服务对内部存储的知识条目进行高效查找,返回最有可能满足询问的一组候选答案列表; - 最终借助强大的自然语言生成技术合成连贯完整的回复内容给到用户端展示出来。 ```python from cherry_studio import KnowledgeBase, ModelLoader # 初始化知识库实例 kb = KnowledgeBase(api_key="your_api_key", api_url="https://api.cherrystudio.com") # 加载指定的大规模预训练模型 model_loader = ModelLoader() retriever_model = model_loader.load('DeepSeek-R1') generator_model = model_loader.load('Qwen2:7b') def rag_pipeline(query): # 执行信息检索部分 retrieved_docs = kb.search(query=query, top_k=5) # 将检索结果作为上下文传递给生成器 context = " ".join([doc['text'] for doc in retrieved_docs]) # 获取最终的回答输出 response = generator_model.generate(context=context, query=query) return response ```
评论 53
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CoderJia_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值