莫烦TensorFlow_05

import tensorflow as tf
import numpy as np

def add_layer(inputs, in_size, out_size, activation_function = None):
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))  # hang lie
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs
 
x_data = np.linspace(-1,1,300)[:, np.newaxis] # 一列;[np.newaxis,:] 一行
noise  = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

#input layer 1 
#hidden layer 10
#output layer 1

xs = tf.placeholder(tf.float32, [None, 1]) # 行数不固定,列数是1
ys = tf.placeholder(tf.float32, [None, 1])

l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function = None)

loss = tf.reduce_mean(
  tf.reduce_sum(
    tf.square(ys - prediction), 
    reduction_indices=[1]
    )
  )

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)


for i in range(1000):
  sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) 
  if i % 50 == 0:
    print(sess.run(loss, 
		   feed_dict={xs:x_data, ys:y_data}
		   )
	  )




输入层1

隐藏层10

输出层1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值