[论文速览]:多源异质域适应 Multi-source Heterogeneous Domain Adaptation

Multi-source Heterogeneous Domain Adaptation with Conditional Weighting Adversarial Network

[paper]

目录

Multi-source Heterogeneous Domain Adaptation with Conditional Weighting Adversarial Network

Abstract

Problem Formulation

Conditional Weighting Adversarial Network

Overview

Heterogeneous Feature Transformation

Adversarial Distribution Alignment

Multi-source Conditional Weighting

The Overall Objective of CWAN


 

Abstract

Heterogeneous domain adaptation (HDA) tackles the learning of cross-domain samples with both different probability distributions and feature representations.

Most of existing HDA studies focus on the single-source scenario. In reality, however, it is not uncommon to obtain samples from multiple heterogeneous domains.

In this paper, we study the multi-source heterogeneous domain adaptation problem, and propose a Conditional Weighting Adversarial Network (CWAN) to address it. The proposed CWAN adversarially learns a feature transformer, a label classifier, and a domain discriminator. To quantify the importance of different source domains, CWAN introduces a sophisticated conditional weighting scheme to calculate the weights of the source domains according to the conditional distribution divergence between the source and target domains. Different from existing weighting schemes, the proposed conditional weighting scheme not only weights the source domains but also implicitly aligns the conditional distributions during the optimization process. Experimental results clearly demonstrate that the proposed CWAN performs much better than several state-of-the-art methods on three real-world datasets.

第一句,背景介绍:介绍什么是 HDA,异构域适应 (HDA) 解决了具有不同概率分布和不同特征表示的跨域样本的学习问题。

第二、三句,提出问题:大多数现有的 HDA 研究集中在单一源方案上。然而,在现实中,从多个不同的领域获得样本并不少见。

第四句,本文工作:一句话概括本文干了啥,即 本文研究了多源异质域自适应问题,并提出了一种条件加权对抗网络 (CWAN) 来解决该问题。

第五-七句,算法介绍:提出的 CWAN 反向学习一个特征转换器、一个标签分类器和一个域判别器。为了量化不同源域的重要性,CWAN 引入了一种复杂的条件加权方案,根据源域和目标域之间的条件分布差异来计算源域的权重。与现有的加权方案不同,提出的条件加权方案不仅对源域进行加权,而且在优化过程中隐含地对齐条件分布。

最后一句,实验结论

 

Problem Formulation

 

 

Conditional Weighting Adversarial Network

Overview

 

Heterogeneous Feature Transformation

 

Adversarial Distribution Alignment

 

Multi-source Conditional Weighting

 

 

The Overall Objective of CWAN

 

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
虽然模糊专家通常使用同质专家的知识来构建模糊模型,但处理从异质专家组中获得的知识要困难得多。 这个问题在可持续牧场管理领尤为突出。 处理意见多样性的一种方法是为所有专家开发一个模糊系统,并将所有这些所谓的初级系统组合成一个多模糊模型。 为了使用一组行政专家的知识推导出每个主要模糊系统,在伊朗西南部法尔斯省的三个不同地区进行了几次半结构化访谈。 为了找到多模糊模型的最终输出,我们应用了不同的投票方法。 第一种方法简单地使用初级输出的算术平均值作为多模糊模型的最终输出。 此最终输出代表对正确库存率的估计。 我们还提出了其他(无)监督投票方法。 最重要的是,通过协调主要输出,使异常值不再受到重视,我们引入了一种无监督投票方法,计算正确库存率的加权估计。 这种协调方法有望为政策制定者提供一种新的有用工具,以处理专家意见的异质性:它在可用的现场数据很少并且被迫仅依赖专家知识的情况下尤其有用。 通过构建基于异质专家知识引出的三个模糊模型,我们的研究显示了可持续牧场管理中存在的多维模糊性。 最后,通过比较最终的放养正确率与其中等范围,本研究证明了伊朗西南部法尔斯省三个地区的牧场存在过度放牧。 关键词:可持续牧场管理,承载能力,多模糊模型,异构
### 回答1: MCS-RF是一种多源异构数据融合方法,它结合了多样的数据源,并运用随机森林算法进行数据融合。该方法主要经过以下几个步骤实现。 首先,MCS-RF首先从不同的数据源中收集与特定问题相关的数据。这些数据可能来自不同的领,例如社交媒体、传感器网络、互联网等。这些数据可能具有不同的格式和特征,并且它们通常是异构的。 其次,MCS-RF通过数据预处理阶段对收集到的数据进行准备。在数据预处理阶段,可能会进行数据清洗、缺失值填充、特征选择等操作,以确保数据的质量和一致性。这样可以减少噪声和冗余,并提高后续数据融合的效果。 接着,构建随机森林模型。MCS-RF利用随机森林算法,通过并行构造多棵决策树。每个决策树使用随机抽样的数据子集和随机选择的特征子集进行训练。通过集成这些决策树的预测结果,可以得到较为准确和稳定的预测。 最后,进行数据融合。在随机森林模型构建完成后,MCS-RF将不同数据源中的预测结果进行汇总和整合,得到一个最终的预测结果。一种常用的整合方法是采用投票或平均的方式,通过多个预测结果的综合来减少误差和提高准确性。 总的来说,MCS-RF方法通过综合多源异构数据和随机森林算法的应用,能够在不同领的数据中获得准确的预测结果。它能够充分利用各个数据源的特点和优势,提高数据融合的效果,并在实际应用中具有广泛的应用价值。 ### 回答2: 多源异构数据融合方法MCS-RF(Multi-Source Heterogeneous Data Fusion based on Convolutional Sparse Random Forest)是一种基于卷积稀疏随机森林的多源异构数据融合方法。 MCS-RF方法通过将不同来源、不同类型的数据进行融合,提高了数据的综合利用能力和融合结果的精确度。该方法首先使用卷积神经网络(CNN)对每个数据源进行特征提取,得到数据的高级表示。接着,使用稀疏编码技术将每个数据源的高级表示分解为稀疏的表示和稠密的表示。稀疏表示捕捉到了数据源特有的信息,而稠密表示则表示了数据源的共享信息。 随后,将每个数据源的稀疏表示和稠密表示分别输入到不同的随机森林中进行训练。这样可以使每个数据源的特征都得到了充分的利用。最后,通过加权融合的方式将每个数据源的随机森林结果融合起来得到最终的融合结果。 MCS-RF方法在多源异构数据融合任务中具有较高的准确性和稳定性。它能够充分利用不同数据源之间的互补性,提高融合结果的质量。此外,该方法还具有较好的可解释性,能够对融合结果进行解释和分析,有助于理解数据源之间的差异和关联。 总的来说,MCS-RF方法是一种基于卷积稀疏随机森林的多源异构数据融合方法,通过特征提取、稀疏表示和随机森林融合等步骤,实现了多源数据的融合,并取得了较好的效果。 ### 回答3: 多源异构数据融合方法mcs-rf是一种基于多分类子集随机森林(Multi-Class Subspace Random Forest)的数据融合算法。该算法通过将不同数据源的数据进行特征子集划分和随机森林分类建模,实现对多源异构数据的融合与分类。 mcs-rf方法的具体步骤如下: 1. 对每个数据源的数据进行特征子集划分。根据数据源的特点和属性,将每个数据源的特征集合划分为多个不同的特征子集。 2. 在每个特征子集上分别构建随机森林分类器。对于每个特征子集,使用随机森林算法建立一个分类器模型,该模型能够对该特征子集上的数据进行有效分类。 3. 将各个数据源的分类器模型进行集成。将每个数据源的特征子集分类器进行集成,得到一个综合的多源异构数据融合模型。 4. 对待分类样本进行预测。利用融合模型,对新的待分类样本进行预测,得到其分类结果。 mcs-rf方法的特点是能够有效利用多个数据源的信息,通过特征子集划分和随机森林分类建模,实现对多源异构数据的融合和分类。该方法能够提高分类准确度,提升数据融合的效果。它还能够处理不同数据源之间的异构性,适用于多源数据融合的场景。 总之,mcs-rf方法是一种基于多分类子集随机森林的多源异构数据融合方法,通过特征子集划分和随机森林分类建模实现数据融合和分类。它能够充分利用多个数据源的信息,提高分类准确度,适用于多源数据融合的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值