AI视野·今日CS.Robotics 机器人学论文速览
Tue, 24 Oct 2023
Totally 50 papers
👉上期速览✈更多精彩请移步主页

Daily Robotics Papers
| Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for Autonomous Real-World Reinforcement Learning Authors Jingyun Yang, Max Sobol Mark, Brandon Vu, Archit Sharma, Jeannette Bohg, Chelsea Finn 机器学习中的预训练和微调范式在广泛的领域取得了巨大的成功,因为使用互联网上的现有数据或预训练模型可以快速轻松地学习新任务。我们的目标是在机器人强化学习中实现这种范式,让机器人通过利用互联网上的数据和模型,以很少的人类努力来学习新任务。然而,强化学习通常需要大量的人力,以手动奖励规范或环境重置的形式,即使策略是预先训练的。我们推出了 RoboFuME,这是一种无需重置的微调系统,可以根据先前经验的不同数据集来预训练多任务操作策略,并在线进行自我改进,以最少的人为干预来学习目标任务。我们的见解是利用校准的离线强化学习技术来确保在存在分布变化的情况下对预先训练的策略进行有效的在线微调,并利用预先训练的视觉语言模型 VLM 来构建强大的奖励分类器,以便在在线微调期间自主提供奖励信号调整过程。在五种真实的机器人操作任务中,我们证明了我们的方法可以整合在不同机构收集的现有机器人数据集中的数据,并在短短 3 小时的自主现实世界经验内改进目标任务。我们还在模拟实验中证明,我们的方法优于使用不同 RL 算法或不同方法来预测奖励的先前工作。 |
| Fusion-Driven Tree Reconstruction and Fruit Localization: Advancing Precision in Agriculture Authors Kaiming Fu, Peng Wei, Juan Villacres, Zhaodan Kong, Stavros G. Vougioukas, Brian N. Bailey 水果配送对于塑造农业和农业机器人的未来至关重要,为简化供应链铺平道路。这项研究引入了一种创新方法,利用 RGB 图像、LiDAR 和 IMU 数据的协同作用,实现复杂的树木重建和水果的精确定位。这种集成不仅提供了对水果分布的洞察,从而提高了农业机器人和自动化系统的指导精度,而且还为模拟不同树木结构的合成水果模式奠定了基础。为了验证这种方法,在受控环境和实际桃园中进行了实验。 |
| RD-VIO: Robust Visual-Inertial Odometry for Mobile Augmented Reality in Dynamic Environments Authors Jinyu Li, Xiaokun Pan, Gan Huang, Ziyang Zhang, Nan Wang, Hujun Bao, Guofeng Zhang 对于视觉或视觉惯性里程计系统来说,处理动态场景和纯旋转的问题通常具有挑战性。在这项工作中,我们设计了一种新颖的视觉惯性里程计 VIO 系统(称为 RD VIO)来处理这两个问题。首先,我们提出了一种 IMU PARSAC 算法,该算法可以在两阶段过程中稳健地检测和匹配关键点。在第一种状态下,使用视觉和 IMU 测量将地标与新的关键点进行匹配。我们从匹配中收集统计信息,然后指导第二阶段的内部关键点匹配。其次,为了处理纯旋转问题,我们在数据关联过程中检测运动类型并采用延迟三角测量技术。我们将纯旋转框架制成特殊的副框架。在求解视觉惯性束平差时,它们为纯旋转运动提供了额外的约束。我们在公共数据集上评估拟议的 VIO 系统。 |
| Robot Skill Generalization via Keypoint Integrated Soft Actor-Critic Gaussian Mixture Models Authors Iman Nematollahi, Kirill Yankov, Wolfram Burgard, Tim Welschehold 在现实世界场景中运行的机器人操纵系统面临的一个长期挑战是如何适应和推广其获得的运动技能以适应看不见的环境。我们采用整合模仿和强化范式的混合技能模型来应对这一挑战,探索技能的学习和适应,以及通过学习的关键点在场景中的核心基础,如何促进这种泛化。为此,我们开发了关键点集成软演员评论家高斯混合模型 KIS GMM 方法,该方法学习将场景内动态系统的参考预测为 3D 关键点,利用机器人在技能学习期间的物理交互获得的视觉观察结果。通过在模拟和现实环境中进行综合评估,我们表明,我们的方法使机器人能够对新环境获得显着的零样本泛化,并比从头开始学习更快地改进目标环境中的技能。重要的是,这是在不需要新的地面实况数据的情况下实现的。 |
| Shareable Driving Style Learning and Analysis with a Hierarchical Latent Model Authors Chaopeng Zhang, Wenshuo Wang, Zhaokun Chen, Jian Zhang, Lijun Sun, Junqiang Xi 驾驶风格通常用来表征一个驾驶员或一组驾驶员的驾驶行为。然而,目前尚不清楚一个人的驾驶风格如何与其他驾驶员有某些共同点。我们的见解是,驾驶行为是对个体内部和个体之间可共享的潜在驾驶风格的加权组合的一系列反应。为此,本文开发了一种分层潜在模型来学习驾驶行为和驾驶风格之间的关系。我们首先提出一种基于片段的方法来表示复杂的顺序驾驶行为,从而能够在低维特征空间中充分表示驾驶行为。然后,通过引入狄利克雷分配机制,我们通过分层潜在模型提供了驾驶行为和共享驾驶风格相互作用的分析公式。我们开发的模型最终经过 100 名驾驶员在城市和高速公路自然驾驶环境中的验证和验证。实验结果表明,个体内部和个体之间的驾驶风格是相同的。我们还分析了年龄、性别和驾驶经验等性格对驾驶风格的影响,发现天生具有攻击性的驾驶员不会总是保持攻击性驾驶,即有时表现得很冷静,但攻击性比例高于其他类型的驾驶员 |
| AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation Authors Haojia Li, Haokun Wang, Chen Feng, Fei Gao, Boyu Zhou, Shaojie Shen 机器人界对自主空中运输越来越感兴趣。与其他系统相比,具有悬挂有效载荷的无人机具有机械简单性和敏捷性等优势,但在规划和控制方面提出了巨大的挑战。为了实现完全自主的空中运输,本文提出了解决这些困难的系统解决方案。首先,我们提出了一种实时规划方法,考虑到系统的时变形状和非线性动力学,生成平滑轨迹,确保全身安全性和动态可行性。此外,还设计了具有分层扰动补偿策略的自适应 NMPC,以克服未知的外部扰动和不准确的模型参数。大量的实验表明,我们的方法即使在高度受限的环境中也能够在线生成高质量的轨迹,并且即使在很大的不确定性下也能够准确地跟踪攻击性的飞行轨迹。 |
| Invariance is Key to Generalization: Examining the Role of Representation in Sim-to-Real Transfer for Visual Navigation Authors Bo Ai, Zhanxin Wu, David Hsu 数据驱动的机器人控制方法一直在迅速加快步伐,但对未知任务领域的泛化仍然是一个严峻的挑战。我们认为泛化的关键是表征足够丰富以捕获所有任务相关信息并且对训练域和测试域之间多余的可变性保持不变。我们通过实验研究了这种包含用于视觉导航的深度和语义信息的表示,并表明它使得完全在模拟室内场景中训练的控制策略能够推广到室内和室外的不同现实世界环境。此外,我们表明我们的表示减少了训练域和测试域之间的 A 距离,从而改善了泛化误差范围。 |
| Efficient Causal Discovery for Robotics Applications Authors Luca Castri, Sariah Mghames, Nicola Bellotto 使用机器人在与人类共享的环境(例如仓库、购物中心或医院)中自动执行任务,要求这些机器人理解附近代理和物体之间的基本物理交互。具体来说,创建模型来表示这些元素之间的因果关系可以帮助预测不可预见的人类行为并预测特定机器人动作的结果。为了适合机器人,因果分析必须既快速又准确,满足实时需求和大多数机器人应用中典型的有限计算资源。在本文中,我们展示了快速准确的因果分析方法(称为 Filtered PCMCI F PCMCI )的实际演示,以及现实世界的机器人应用。 |
| Martian Lava Tube Exploration Using Jumping Legged Robots: A Concept Study Authors J rgen Anker Olsen, Kostas Alexis 近年来,机器人探索在行星探索中变得越来越重要。火星熔岩管是人们特别感兴趣的探索领域之一,它具有几个独特的有趣特征。首先,理论上它们含有更容易获取的资源,例如火星上就地利用所需的水冰。其次,巨大的熔岩管可以为未来可能的人类火星任务提供辐射和撞击庇护所。第三,熔岩管可以为火星地质和可能的生物历史提供受保护和保存的视图。然而,由于这些熔岩管的巨大尺寸、几何复杂性、不平坦的地形、陡坡、塌陷部分、重大障碍物和不稳定的表面,对这些熔岩管的勘探提出了重大挑战。这些挑战可能会阻碍传统轮式漫游车的探索。为了克服这些挑战,腿式机器人,特别是跳跃系统被认为是潜在的解决方案。跳跃腿机器人利用腿来行走和跳跃。与轮式或履带式系统相比,这使它们能够更轻松地穿越不平坦的地形和陡坡。在火星熔岩管探索的背景下,跳跃腿机器人将特别有用,因为它们能够跳过大石块、间隙和障碍物,以及下降和攀爬陡坡。这将使他们能够探索和绘制此类洞穴的地图,并可能从其他无法进入的区域收集样本。本文介绍了为太空探索量身定制的最先进的腿式机器人的规格、设计、功能和可能的任务概况。 |
| Adaptive Tuning of Robotic Polishing Skills based on Force Feedback Model Authors Yu Wang, Zhouyi Zheng, Chen Chen, Zezheng Wang, Zhitao Gao, Fangyu Peng, Xiaowei Tang, Rong Yan 获得人类技能提供了一种有效 |

最低0.47元/天 解锁文章
779

被折叠的 条评论
为什么被折叠?



