【今日CV 计算机视觉论文速览】 26 Mar 2019

今日CS.CV计算机视觉论文速览
Tue, 26 Mar 2019
Totally 78 papers
?昨日速览, ✈更多精彩请移步主页

在这里插入图片描述

Interesting:

?SRFBN基于反馈网络的图像超分辨, 基于反馈机制和RNN序列来提升图像超分辨效果(from 四川大学)
在这里插入图片描述在这里插入图片描述
code:https://github.com/Paper99/SRFBN_CVPR19

?DeepRED,利用去噪的正则化来处理图像逆问题,包括去噪、修复、超分辨等。可以看做是deep image prior的改进 (from Technion,,谷歌)
在这里插入图片描述在这里插入图片描述
ref:https://arxiv.org/pdf/1806.02296.pdf
稀疏表示和变换:
http://www4.comp.polyu.edu.hk/~cslzhang/NCSR.htm
http://www.cs.tut.fi/~foi/GCF-BM3D/
相关数据:

?DenseBody, 单张照片生成人体位姿和外形。(from 云从科技)
在这里插入图片描述
相关数据集:Human3.6M, SURREAL and UP-3D

?MeshGAN, 非线性3D人脸形变模型,提出了直接处理三维数据的MeshGan(from 帝国理工)
在这里插入图片描述
相关数据集合:3dMD,4DFAB
相关方法:CoMA
相关三维卷积:Spectral graph CNNs. Bruna et al. [12] ,ChebNet. Defferrard et al. [22],f BEGAN [6]
ref:三维运动捕捉公司:http://www.3dmd.com/

?基于R-CNN的虹膜检测系统, 将虹膜作为两个同心圆进行分割,从眼睛图像中分割出不包括瞳孔的虹膜图像(from 昆山杜克大学)
在这里插入图片描述
相关数据集:(i) NICE-II and (ii) MICHE (GS4, IP5 and GT2).

?ShopSign, 一个多样性的街道招牌中文文字识别数据集,包含了25362个商店门牌和196010文字行,来源于多种手机拍摄的数据,以及多种不同材质的招牌。(from 河南大学 )
在这里插入图片描述
code and dataset:https://github.com/chongshengzhang/shopsign
相关方法: CTPN, TextBoxes++ and EAST
相关数据集:CTW,RCTW,CVPR2018mtmi


Daily Computer Vision Papers

1.Title: DeepCenterline: a Multi-task Fully Convolutional Network for Centerline Extraction
Authors:Zhihui Guo, Junjie Bai, Yi Lu, Xin Wang, Kunlin Cao, Qi Song, Milan Sonka, Youbing Yin
2.Title: CODA: Counting Objects via Scale-aware Adversarial Density Adaption
Authors:Li Wang, Yongbo Li, Xiangyang Xue
3.Title: Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context Aggregation
Authors:Jaime Spencer, Richard Bowden, Simon Hadfield
4.Title: Locomotion and gesture tracking in mice and small animals for neurosceince applications: A survey
Authors:Waseem Abbas, David Masip Rodo
5.Title: ShopSign: a Diverse Scene Text Dataset of Chinese Shop Signs in Street Views
Authors:Chongsheng Zhang, Guowen Peng, Yue
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值