舒尔补在SLAM中的应用

1.舒尔补的定义

对于任意的矩阵 M M M,如下所示
(1) M = [ A B C D ] M = \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right]\tag{1} M=[ACBD](1)

如果矩阵块 D D D是可逆的,则 A − B D − 1 C A-BD^{-1}C ABD1C 称之为 D D D 关于 M M M的舒尔补。
如果矩阵块 A A A是可逆的,则 D − C A − 1 B D-CA^{-1}B DCA1B 称之为 A A A 关于 M M M的舒尔补。

2.舒尔补的由来

在将 M M M变为上三角和下三角的过程中,都会遇到舒尔补:
(2) [ I 0 − C A − 1 I ] [ A B C D ] = [ A B 0 Δ A ] \left[ \begin{matrix} I& 0\\ -CA^{-1}& I \\ \end{matrix}\right] \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] = \left[ \begin{matrix} A& B\\ 0& \Delta A \\ \end{matrix}\right] \tag{2} [ICA10I][ACBD]=[A0BΔA](2)
(3) [ A B C D ] [ I − A − 1 B 0 I ] = [ A 0 C Δ A ] \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] \left[ \begin{matrix} I& -A^{-1}B\\ 0& I \\ \end{matrix}\right] = \left[ \begin{matrix} A& 0\\ C& \Delta A \\ \end{matrix}\right] \tag{3} [ACBD][I0A1BI]=[AC0ΔA](3)
其中: Δ A = D − C A − 1 B \Delta A =D-CA^{-1}B ΔA=DCA1B。将两式联合起来,将M变形为对角形:
(4) [ I 0 − C A − 1 I ] [ A B C D ] [ I − A − 1 B 0 I ] = [ A 0 0 Δ A ] \left[ \begin{matrix} I& 0\\ -CA^{-1}& I \\ \end{matrix}\right] \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] \left[ \begin{matrix} I& -A^{-1}B\\ 0& I \\ \end{matrix}\right] = \left[ \begin{matrix} A& 0\\ 0& \Delta A \\ \end{matrix}\right] \tag{4} [ICA10I][ACBD][I0A1BI]=[A00ΔA](4)

反过来,可以从对角形恢复 M M M
(5) [ I 0 C A − 1 I ] [ A 0 0 Δ A ] [ I A − 1 B 0 I ] = [ A B C D ] \left[ \begin{matrix} I& 0\\ CA^{-1}& I \\ \end{matrix}\right] \left[ \begin{matrix} A& 0\\ 0& \Delta A \\ \end{matrix}\right] \left[ \begin{matrix} I& A^{-1}B\\ 0& I \\ \end{matrix}\right] = \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] \tag{5} [ICA10I][A00ΔA][

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值