舒尔补在SLAM中的应用

1.舒尔补的定义

对于任意的矩阵 M M M,如下所示
(1) M = [ A B C D ] M = \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right]\tag{1} M=[ACBD](1)

如果矩阵块 D D D是可逆的,则 A − B D − 1 C A-BD^{-1}C ABD1C 称之为 D D D 关于 M M M的舒尔补。
如果矩阵块 A A A是可逆的,则 D − C A − 1 B D-CA^{-1}B DCA1B 称之为 A A A 关于 M M M的舒尔补。

2.舒尔补的由来

在将 M M M变为上三角和下三角的过程中,都会遇到舒尔补:
(2) [ I 0 − C A − 1 I ] [ A B C D ] = [ A B 0 Δ A ] \left[ \begin{matrix} I& 0\\ -CA^{-1}& I \\ \end{matrix}\right] \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] = \left[ \begin{matrix} A& B\\ 0& \Delta A \\ \end{matrix}\right] \tag{2} [ICA10I][ACBD]=[A0BΔA](2)
(3) [ A B C D ] [ I − A − 1 B 0 I ] = [ A 0 C Δ A ] \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] \left[ \begin{matrix} I& -A^{-1}B\\ 0& I \\ \end{matrix}\right] = \left[ \begin{matrix} A& 0\\ C& \Delta A \\ \end{matrix}\right] \tag{3} [ACBD][I0A1BI]=[AC0ΔA](3)
其中: Δ A = D − C A − 1 B \Delta A =D-CA^{-1}B ΔA=DCA1B。将两式联合起来,将M变形为对角形:
(4) [ I 0 − C A − 1 I ] [ A B C D ] [ I − A − 1 B 0 I ] = [ A 0 0 Δ A ] \left[ \begin{matrix} I& 0\\ -CA^{-1}& I \\ \end{matrix}\right] \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] \left[ \begin{matrix} I& -A^{-1}B\\ 0& I \\ \end{matrix}\right] = \left[ \begin{matrix} A& 0\\ 0& \Delta A \\ \end{matrix}\right] \tag{4} [ICA10I][ACBD][I0A1BI]=[A00ΔA](4)

反过来,可以从对角形恢复 M M M
(5) [ I 0 C A − 1 I ] [ A 0 0 Δ A ] [ I A − 1 B 0 I ] = [ A B C D ] \left[ \begin{matrix} I& 0\\ CA^{-1}& I \\ \end{matrix}\right] \left[ \begin{matrix} A& 0\\ 0& \Delta A \\ \end{matrix}\right] \left[ \begin{matrix} I& A^{-1}B\\ 0& I \\ \end{matrix}\right] = \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] \tag{5} [ICA10I][A00ΔA][I0A1BI]=[ACBD](5)

舒尔补可以快速求解矩阵的逆

因为
(6) M = [ A B C D ] = [ I 0 C A − 1 I ] [ A 0 0 Δ A ] [ I A − 1 B 0 I ] M= \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] = \left[ \begin{matrix} I& 0\\ CA^{-1}& I \\ \end{matrix}\right] \left[ \begin{matrix} A& 0\\ 0& \Delta A \\ \end{matrix}\right] \left[ \begin{matrix} I& A^{-1}B\\ 0& I \\ \end{matrix}\right] \tag{6} M=[ACBD]=[ICA10I][A00ΔA][I0A1BI](6)
所以
(7) M − 1 = [ A B C D ] = [ I − A − 1 B 0 I ] [ A − 1 0 0 Δ A − 1 ] [ I 0 − C A − 1 I ] M^{-1}= \left[ \begin{matrix} A& B\\ C& D \\ \end{matrix}\right] = \left[ \begin{matrix} I& -A^{-1}B\\ 0& I \\ \end{matrix}\right] \left[ \begin{matrix} A^{-1}& 0\\ 0& \Delta A^{-1} \\ \end{matrix}\right] \left[ \begin{matrix} I& 0\\ -CA^{-1}& I \\ \end{matrix}\right] \tag{7} M1=[ACBD]=[I0A1BI][A100ΔA1][ICA10I](7)

3.舒尔补在多元高斯分布中的应用

3.1 多元变量的高斯分布

假设多元变量 x x x 服从高斯分布,且由两部分组成: x = [ a , b ] T x =[a,b]^T x=[a,b]T,变量之间构成之间的协方差矩阵为:
(8) K = [ A C T C D ] K = \left[ \begin{matrix} A& C^T\\ C& D \\ \end{matrix}\right] \tag{8} K=[ACCTD](8)

其中 A = c o v ( a , a ) , D = c o v ( b , b ) , C = c o v ( a , b ) A=cov(a,a) ,D = cov(b,b) , C = cov(a,b) A=cov(a,a),D=cov(b,b),C=cov(a,b)。所以变量 x x x的概率分布为
(9) P ( a , b ) = P ( a ) P ( b ∣ a ) ∝ e x p ( − 1 2 [ a b ] T [ A C T C D ] − 1 [ a b ] ) P(a,b) = P(a)P(b|a)\propto exp\left( -\frac{1}{2}\left[\begin{matrix} a\\ b\\ \end{matrix} \right]^T \left[ \begin{matrix} A& C^T\\ C& D \\ \end{matrix}\right]^{-1} \left[\begin{matrix} a\\ b\\ \end{matrix} \right] \right)\tag{9} P(a,b)=P(a)P(ba)exp(21[ab]T[ACCTD]1[ab])(9)

利用舒尔补对上式进行分解,则有
(10) P ( a , b ) ∝ e x p ( − 1 2 [ a b ] T [ A C T C D ] − 1 [ a b ] ) ∝ e x p ( − 1 2 [ a b ] T [ I − A − 1 C T 0 I ] [ A − 1 0 0 Δ A − 1 ] [ I 0 − C A − 1 I ] [ a b ] ) ∝ e x p ( − 1 2 [ a T ( b − C A − 1 a ) T ] [ A − 1 0 0 Δ A − 1 ] [ a b − C A − 1 a ] ) ∝ e x p ( − 1 2 ( a T A − 1 a ) + ( b − C A − 1 a ) T Δ A ( b − C A − 1 a ) ) ∝ e x p ( − 1 2 ( a T A − 1 a ) ) e x p ( − 1 2 ( b − C A − 1 a ) T Δ A ( b − C A − 1 a ) ) P(a,b) \propto exp\left( -\frac{1}{2}\left[\begin{matrix} a\\ b\\ \end{matrix} \right]^T \left[ \begin{matrix} A& C^T\\ C& D \\ \end{matrix}\right]^{-1} \left[\begin{matrix} a\\ b\\ \end{matrix} \right] \right) \\ \propto exp\left( -\frac{1}{2}\left[\begin{matrix} a\\ b\\ \end{matrix} \right]^T \left[ \begin{matrix} I& -A^{-1}C^T\\ 0& I \\ \end{matrix}\right] \left[ \begin{matrix} A^{-1}& 0\\ 0& \Delta A^{-1} \\ \end{matrix}\right] \left[ \begin{matrix} I& 0\\ -CA^{-1}& I \\ \end{matrix}\right] \left[\begin{matrix} a\\ b\\ \end{matrix} \right] \right) \\ \propto exp\left( -\frac{1}{2} \left[ \begin{matrix} a^T & (b-CA^{-1}a)^T\\ \end{matrix}\right] \left[ \begin{matrix} A^{-1}& 0\\ 0& \Delta A^{-1} \\ \end{matrix}\right] \left[ \begin{matrix} a\\ b-CA^{-1}a \\ \end{matrix}\right] \right) \\ \propto exp\left( -\frac{1}{2} (a^TA^{-1}a)+ (b-CA^{-1}a)^T\Delta A(b-CA^{-1}a) \right) \\ \propto exp\left( -\frac{1}{2} (a^TA^{-1}a)\right) exp\left(-\frac{1}{2} (b-CA^{-1}a)^T\Delta A(b-CA^{-1}a) \right) \\ \tag{10} P(a,b)exp(21[ab]T[ACCTD]1[ab])exp(21[ab]T[I0A1CTI][A100ΔA1][ICA10I][ab])exp(21[aT(bCA1a)T][A100ΔA1][abCA1a])exp(21(aTA1a)+(bCA1a)TΔA(bCA1a))exp(21(aTA1a))exp(21(bCA1a)TΔA(bCA1a))(10)
所以有 (11) P ( a ) = e x p ( − 1 2 ( a T A − 1 a ) ) P(a) =exp\left( -\frac{1}{2}(a^TA^{-1}a)\right)\tag{11} P(a)=exp(21(aTA1a))(11)
(12) P ( b ∣ a ) = e x p ( − 1 2 ( b − C A − 1 a ) T Δ A ( b − C A − 1 a ) ) P(b|a) =exp\left(-\frac{1}{2} (b-CA^{-1}a)^T\Delta A(b-CA^{-1}a) \right) \tag{12} P(ba)=exp(21(bCA1a)TΔA(bCA1a))(12)

这意味着我们能从多元高斯分布 P ( a , b ) P(a,b) P(a,b)中分解得到边界概率 P ( a ) P(a) P(a)和条件概率P(b|a)。

3.2 边缘概率和条件概率的协方差矩阵

对于边缘概率 P ( a ) P(a) P(a),有
(13) P ( a ) = ∫ P ( a , b ) d b P(a) = \int P(a,b)db\tag{13} P(a)=P(a,b)db(13)
(14) P ( a ) = e x p ( − 1 2 ( a T A − 1 a ) ) ∼ N ( 0 , A ) P(a) =exp\left( -\frac{1}{2}(a^TA^{-1}a)\right) \sim N(0,A)\tag{14} P(a)=exp(21(aTA1a))N(0,A)(14)
特点:边缘概率 P ( a ) P(a) P(a)的协方差就是从联合概率分布的协方差矩阵中取对应的矩阵块即可

对于条件概率 P ( b ∣ a ) P(b|a) P(ba),有
(15) P ( b ∣ a ) = e x p ( − 1 2 ( b − C A − 1 a ) T Δ A ( b − C A − 1 a ) ) P(b|a) =exp\left(-\frac{1}{2} (b-CA^{-1}a)^T\Delta A(b-CA^{-1}a) \right) \tag{15} P(ba)=exp(21(bCA1a)TΔA(bCA1a))(15)
特点:条件概率 P ( b ∣ a ) ∼ N ( C A − 1 a , Δ A ) P(b|a)\sim N(CA^{-1}a,\Delta A) P(ba)N(CA1a,ΔA),协方差为 a a a对应的舒尔补 Δ A \Delta A ΔA,均值为 C A − 1 a CA^{-1}a CA1a

3.3 边缘概率和条件概率的信息矩阵

信息矩阵是协方差矩阵的逆,所以变量 x x x的信息矩阵为
(16) K − 1 = [ A C T C D ] − 1 = [ Λ a a Λ a b Λ b a Λ b b ] K^{-1} = \left[ \begin{matrix} A& C^T\\ C& D \\ \end{matrix}\right] ^{-1} = \left[ \begin{matrix} \Lambda_{aa}& \Lambda_{ab}\\ \Lambda_{ba}& \Lambda_{bb} \\ \end{matrix}\right] \tag{16} K1=[ACCTD]1=[ΛaaΛbaΛabΛbb](16)
由公式(7)可知,信息矩阵与协方差矩阵元素之间的关系为
(17) K − 1 = [ A − 1 + A − 1 C T Δ A − 1 C A − 1 − A − 1 C T Δ A − 1 − Δ A − 1 C A − 1 Δ A − 1 ] = [ Λ a a Λ a b Λ b a Λ b b ] K^{-1} = \left[ \begin{matrix} A^{-1}+A^{-1}C^T\Delta A^{-1}CA^{-1}& -A^{-1}C^T\Delta A^{-1}\\ -\Delta A^{-1}CA^{-1}& \Delta A^{-1}\\ \end{matrix}\right] = \left[ \begin{matrix} \Lambda_{aa}& \Lambda_{ab}\\ \Lambda_{ba}& \Lambda_{bb} \\ \end{matrix}\right] \tag{17} K1=[A1+A1CTΔA1CA1ΔA1CA1A1CTΔA1ΔA1]=[ΛaaΛbaΛabΛbb](17)
由(14)知 边缘概率的协方差矩阵为 A A A,所以其对应的信息矩阵为 A − 1 A^{-1} A1,根据式(17)可知
(18) A − 1 = A − 1 + A − 1 C T Δ A − 1 C A − 1 − ( − A − 1 C T Δ A − 1 ( Δ A − 1 ) − 1 − Δ A − 1 C A − 1 ) = Λ a a − Λ a b Λ b b − 1 Λ b a A^{-1} = A^{-1}+A^{-1}C^T\Delta A^{-1}CA^{-1}-(-A^{-1}C^T\Delta A^{-1}( \Delta A^{-1})^{-1} -\Delta A^{-1}CA^{-1}) =\Lambda_{aa}-\Lambda_{ab}\Lambda_{bb}^{-1}\Lambda_{ba}\tag{18} A1=A1+A1CTΔA1CA1(A1CTΔA1(ΔA1)1ΔA1CA1)=ΛaaΛabΛbb1Λba(18)
即边缘概率 P ( a ) P(a) P(a)的信息矩阵为 Λ a a − Λ a b Λ b b − 1 Λ b a \Lambda_{aa}-\Lambda_{ab}\Lambda_{bb}^{-1}\Lambda_{ba} ΛaaΛabΛbb1Λba

由式(15)可知条件概率 P ( b ∣ a ) P(b|a) P(ba)的协方差矩阵为 Δ A \Delta A ΔA,所以其信息矩阵为 Δ A − 1 = Λ b b \Delta A^{-1} =\Lambda_{bb} ΔA1=Λbb

3.4总结

边际概率对于协方差矩阵的操作是很容易的,但不好操作信息矩阵。条件概率恰好相反,对于信息矩阵容易操作,不好操作协方差矩阵。

表格总结如下
在这里插入图片描述

4. 舒尔补在vslam中的应用

随着 VSLAM 系统不断往新环境探索,就会有新的相机姿态以及看到新的环境特征,最小二乘残差就会越来越多,信息矩阵越来越大,计算量将不断增加。 为了保持优化变量的个数在一定范围内,需要使用滑动窗口算法动态增加或移除优化变量。

但是该如何移除旧的状态变量呢?

直接丢弃变量和对应的测量值,会损失信息。正确的做法是使用边际概率,将丢弃变量所携带的信息传递给剩余变量。即根据舒尔补的在边缘概率方面得到的结论,从 P ( x 1 , x 2 , x 3 , . . . . . , x n ) P(x_{1},x_{2},x_{3},.....,x_{n}) P(x1,x2,x3,.....,xn)的协方差矩阵或信息矩阵中求得 P ( x 2 , x 3 , . . . . . , x n ) P(x_{2},x_{3},.....,x_{n}) P(x2,x3,.....,xn)的协方差矩阵或信息矩阵。该过程称之为边缘化。这是滑动窗口算法中非常重要的理论基础。

该部分内容还有很多细节,以后在继续补充。

  • 7
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值