YOLOv7系列:改进的目标检测算法DIoU-NMS、SIoU-NMS、EIoU-NMS、CIoU-NMS、GIoU-NMS及其实现

100 篇文章 26 订阅 ¥59.90 ¥99.00
本文介绍了YOLOv7系列目标检测算法在NMS过程中的改进,包括DIoU-NMS、SIoU-NMS、EIoU-NMS、CIoU-NMS和GIoU-NMS。这些方法通过优化IoU度量,提升了目标检测的精度和效率,尤其在处理目标框重叠和形状变化时表现出更好的性能。
摘要由CSDN通过智能技术生成

目标检测是计算机视觉领域中的重要任务,在实际应用中具有广泛的应用价值。其中,YOLOv7系列是一种经典的目标检测算法,但在进行目标框的非最大抑制(NMS)时存在一些问题。为了提高目标检测的准确性和效率,研究人员在YOLOv7系列中引入了一些创新的改进方法,包括DIoU-NMS、SIoU-NMS、EIoU-NMS、CIoU-NMS和GIoU-NMS。

  1. DIoU-NMS:Distance-IoU NMS
    DIoU-NMS是基于DIoU距离度量的非最大抑制方法。DIoU是一种衡量目标框之间距离的指标,考虑了目标框的位置、尺度和形状等因素。DIoU-NMS通过计算目标框之间的DIoU距离,选择性地保留具有高置信度的目标框,从而提高了目标检测的精度。

  2. SIoU-NMS:Smooth-IoU NMS
    SIoU-NMS采用了平滑的IoU度量方法。传统的IoU度量方法在目标框重叠度较低时会存在梯度爆炸的问题,导致非最大抑制的效果不理想。SIoU-NMS通过引入平滑因子,解决了这个问题,并在一定程度上提高了目标检测的性能。

  3. EIoU-NMS:Enhanced-IoU NMS
    EIoU-NMS是一种增强型的IoU度量方法。传统的IoU度量只考虑了目标框的位置信息,在目标形状发生变化时容易受到影响。EIoU-NMS引入了形状因子,充分利用了目标框的形状信息,从而提高了目标检测的鲁棒性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值