【Matlab】《卡尔曼滤波与组合导航》 第一次作业 基于KF的GPS静态/动态滤波

#如何让小智AI成为你的第二大脑——“免费”送小智AI智能音箱征文活动#
AI助手已提取文章相关产品:

首先,我将向您展示一个简单的MATLAB示例,演示如何使用卡尔曼滤波器进行GPS静态/动态滤波。这个示例将使用MATLAB内置的ekf函数,这是一个扩展卡尔曼滤波器(Extended Kalman Filter,EKF)。

首先,我们将生成一个简单的模拟数据集,以模拟GPS接收器的输出。然后,我们将使用卡尔曼滤波器对这些数据进行静态和动态过滤。最后,我们将评估滤波后的结果,并与原始数据进行比较。

% 生成模拟数据
t = 1:100; % 时间步
x_true = sin(0.1*t); % 真实位置
x_measure = x_true + 0.5*randn(size(t)); % 模拟GPS测量

% 静态过滤
% 定义状态转移矩阵
A = 1;
% 定义状态噪声协方差矩阵
Q = 0.1;
% 定义观测矩阵
H = 1;
% 定义观测噪声协方差矩阵
R = 0.5;
% 定义初始状态和协方差矩阵
x0 = 0;
P0 = 1;
% 使用卡尔曼滤波器进行静态过滤
[x_static, P_static] = ekf(@f_static, @h_static, x0, P0, Q, R, x_measure, A, H);

% 动态过滤
% 定义状态转移矩阵
A = 1;
% 定义状态噪声协方差矩阵
Q = 0.1;
% 定义观测矩阵
H = 1;
% 定义观测噪声协方差矩阵
R = 0.5;
% 定义初始状态和协方差矩阵
x0 = 0;
P0 = 1;
% 使用卡尔曼滤波器进行动态过滤
[x_dynamic, P_dynamic] = ekf(@f_dynamic, @h_dynamic, x0, P0, Q, R, x_measure, A, H);

% 绘图比较
figure;
p

您可能感兴趣的与本文相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智慧浩海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值