首先,我将向您展示一个简单的MATLAB示例,演示如何使用卡尔曼滤波器进行GPS静态/动态滤波。这个示例将使用MATLAB内置的ekf函数,这是一个扩展卡尔曼滤波器(Extended Kalman Filter,EKF)。
首先,我们将生成一个简单的模拟数据集,以模拟GPS接收器的输出。然后,我们将使用卡尔曼滤波器对这些数据进行静态和动态过滤。最后,我们将评估滤波后的结果,并与原始数据进行比较。
% 生成模拟数据
t = 1:100; % 时间步
x_true = sin(0.1*t); % 真实位置
x_measure = x_true + 0.5*randn(size(t)); % 模拟GPS测量
% 静态过滤
% 定义状态转移矩阵
A = 1;
% 定义状态噪声协方差矩阵
Q = 0.1;
% 定义观测矩阵
H = 1;
% 定义观测噪声协方差矩阵
R = 0.5;
% 定义初始状态和协方差矩阵
x0 = 0;
P0 = 1;
% 使用卡尔曼滤波器进行静态过滤
[x_static, P_static] = ekf(@f_static, @h_static, x0, P0, Q, R, x_measure, A, H);
% 动态过滤
% 定义状态转移矩阵
A = 1;
% 定义状态噪声协方差矩阵
Q = 0.1;
% 定义观测矩阵
H = 1;
% 定义观测噪声协方差矩阵
R = 0.5;
% 定义初始状态和协方差矩阵
x0 = 0;
P0 = 1;
% 使用卡尔曼滤波器进行动态过滤
[x_dynamic, P_dynamic] = ekf(@f_dynamic, @h_dynamic, x0, P0, Q, R, x_measure, A, H);
% 绘图比较
figure;
p
订阅专栏 解锁全文
963

被折叠的 条评论
为什么被折叠?



