【概率论基础进阶】随机变量及其分布-常用分布

一、 0 − 1 0-1 01分布

定义:如果随机变量 X X X有分布律

X X X 0 0 0 1 1 1
P P P 1 − p 1-p 1p p p p
0 < p < 1 0<p<1 0<p<1,则称 X X X服从参数为 p p p 0 − 1 0-1 01分布,或称 X X X具有 0 − 1 0-1 01分布

二、二项分布

定义:如果随机变量 X X X有分布律
P { X = k } = C n k p k q n − k , k = 0 , 1 , 2 , ⋯   , n P \left\{X=k\right\}=C_{n}^{k}p^{k}q^{n-k},k=0,1,2,\cdots ,n P{X=k}=Cnkpkqnk,k=0,1,2,,n
其中 0 < p < 1 , q = 1 − p 0<p<1,q=1-p 0<p<1,q=1p,则称 X X X服从参数为 n , p n,p n,p的二项分布,记作 X ∼ B ( n , p ) X \sim B(n,p) XB(n,p)

n n n重伯努利试验中,若每次实验成功率为 p ( 0 < p < 1 ) p(0<p<1) p(0<p<1),则在 n n n次独立重复试验中成功的总次数 X X X服从二项分布

n = 1 n=1 n=1时,不难验证二项分布就退化成 0 − 1 0-1 01分布。所以 0 − 1 0-1 01分布也可以记为 B ( 1 , p ) B(1,p) B(1,p)

三、几何分布

定义:如果随机变量 X X X有分布律
P { X = k } = p q k − 1 , k = 1 , 2 , ⋯ P \left\{X=k\right\}=pq^{k-1},k=1,2,\cdots P{X=k}=pqk1,k=1,2,
其中 0 < p < 1 , q = 1 − p 0<p<1,q=1-p 0<p<1,q=1p,则称 X X X服从参数为 p p p的几何分布,或称 X X X具有几何分布

在独立地重复做一系列伯努利试验中,若每次试验成功率为 p ( 0 < p < 1 ) p(0<p<1) p(0<p<1),则在第 k k k次试验时才首次试验成功的概率服从几何分布

四、超几何分布

定义:如果随机变量 X X X有分布律
P { X = k } = C M k C N − M n − k C N n , k = l 1 , ⋯   , l 2 P \left\{X=k\right\}= \frac{C_{M}^{k}C_{N-M}^{n-k}}{C_{N}^{n}},k=l_{1},\cdots ,l_{2} P{X=k}=CNnCMkCNMnk,k=l1,,l2
其中 l 1 = max ⁡ ( 0 , n − N + M ) , l 2 = min ⁡ ( M , n ) l_{1}=\max(0,n-N+M),l_{2}=\min(M,n) l1=max(0,nN+M),l2=min(M,n)。则称随机变量 X X X服从参数为 n , N , M n,N,M n,N,M的超几何分布

如果 N N N件产品中含有 M M M件次品,从中任意一次取出 n n n件(或从中一件接一件不放回地取出 n n n件),令 X = 抽取的 n 件产品中的次品件数 X=抽取的n件产品中的次品件数 X=抽取的n件产品中的次品件数,则 X X X服从参数为 n , N , M n,N,M n,N,M的超几何分布

如果 N N N件产品中含有 M M M件次品,从中一件接一件有放回的取 n n n次(即每次取出记录后就放回,再取下一个),则 X X X服从 B ( n , M N ) B(n, \frac{M}{N}) B(n,NM)

五、泊松分布

如果随机变量 X X X的分布律为
P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , , ⋯ P \left\{X=k\right\}=\frac{\lambda^{k}}{k!}e^{-\lambda},k=0,1,2,,\cdots P{X=k}=k!λkeλ,k=0,1,2,,
其中 λ > 0 \lambda>0 λ>0为常数,则称随机变量 X X X服从参数为 λ \lambda λ的泊松分布,记作 X ∼ P ( λ ) X \sim P(\lambda) XP(λ)

对于泊松分布有
∑ k = 0 + ∞ P { X = k } = ∑ k = 0 + ∞ λ k k ! e − λ = 1 ∑ k = 0 + ∞ λ k k ! = e λ 如果把 λ 看做 x ∑ k = 0 + ∞ x k k ! = e x \begin{aligned} \sum\limits_{k=0}^{+\infty}P \left\{X=k\right\}=\sum\limits_{k=0}^{+\infty}\frac{\lambda^{k}}{k!}e^{-\lambda}&=1 \\ \sum\limits_{k=0}^{+\infty}\frac{\lambda^{k}}{k!}&=e^{\lambda}\quad如果把\lambda看做x\\ \sum\limits_{k=0}^{+\infty}\frac{x^{k}}{k!}&=e^{x} \end{aligned} k=0+P{X=k}=k=0+k!λkeλk=0+k!λkk=0+k!xk=1=eλ如果把λ看做x=ex
即为 e x e^{x} ex的幂级数展开

例1:设一文本各页的印刷错误 X X X服从泊松分布。已知有一个和两个印刷错误的页数相同,则随意抽查的 4 4 4页中无印刷错误的概率 p = ( ) p=() p=()

注意理解题意!

P { X = 1 } = P { X = 2 } λ 1 ! e − λ = λ 2 2 ! e − λ \begin{aligned} P \left\{X=1\right\}&=P \left\{X=2\right\}\\ \frac{\lambda}{1!}e^{-\lambda}&=\frac{\lambda^{2}}{2!}e^{-\lambda} \end{aligned} P{X=1}1!λeλ=P{X=2}=2!λ2eλ
解得 λ = 2 \lambda=2 λ=2,则某也没有印刷错误的概率为 P { X = 0 } = e − 2 P \left\{X=0\right\}= e^{-2} P{X=0}=e2。可以理解各页印刷错误相互独立
p = ( e − 2 ) 4 = e − 8 p=(e^{-2})^{4}=e^{-8} p=(e2)4=e8

不独立就不能往下算了

六、均匀分布

定义:如果连续型随机变量 X X X的概率密度为
f ( x ) = { 1 b − a a ≤ x ≤ b 0 其他 f(x)=\left\{\begin{aligned}& \frac{1}{b-a}&a \leq x \leq b\\&0&其他\end{aligned}\right. f(x)= ba10axb其他
则称 X X X在区间 [ a , b ] [a,b] [a,b]上服从均匀分布,记作 X ∼ U [ a , b ] X \sim U[a,b] XU[a,b]

如果概率密度为
f ( x ) = { 1 b − a a < x < b 0 其他 f(x)=\left\{\begin{aligned}& \frac{1}{b-a}&a < x < b\\&0&其他\end{aligned}\right. f(x)= ba10a<x<b其他
则称 X X X在区间 ( a , b ) (a,b) (a,b)上服从均匀分布,记作 X ∼ U ( a , b ) X \sim U(a,b) XU(a,b)

无论 X ∼ U [ a , b ] X\sim U[a,b] XU[a,b] X ∼ U ( a , b ) X\sim U(a,b) XU(a,b),它们的分布函数均为
F ( x ) = { 0 , x < a x − a b − a a ≤ x < b 1 b ≤ x F(x)=\left\{\begin{aligned}&0,&x<a\\& \frac{x-a}{b-a}&a \leq x<b\\&1&b \leq x\end{aligned}\right. F(x)= 0,baxa1x<aax<bbx

性质

X ∼ U [ a , b ] X \sim U[a,b] XU[a,b],则对 a ≤ c < d ≤ b a \leq c <d \leq b ac<db
P { c ≤ X ≤ d } = d − c b − a P \left\{c \leq X \leq d\right\}=\frac{d-c}{b-a} P{cXd}=badc
即随机变量 X X X落入区间 [ c , d ] [c,d] [c,d]的概率等于该区间长度与 [ a , b ] [a,b] [a,b]长度之比

七、指数分布

定义:如果连续型随机变量 X X X的概率密度为
f ( x ) = { λ e − λ x x > 0 0 x ≤ 0 , λ > 0 f(x)=\left\{\begin{aligned}&\lambda e^{-\lambda x}&x>0\\&0&x \leq 0\end{aligned}\right.,\lambda>0 f(x)={λeλx0x>0x0,λ>0
则称 X X X服从参数为 λ \lambda λ的指数分布,记作 X ∼ E ( λ ) X \sim E(\lambda) XE(λ)

X ∼ E ( λ ) X \sim E(\lambda) XE(λ),则 X X X的分布函数为
F ( x ) = { 1 − e − λ x x > 0 0 x ≤ 0 , λ > 0 F(x)=\left\{\begin{aligned}&1- e^{-\lambda x}&x>0\\&0&x \leq 0\end{aligned}\right.,\lambda>0 F(x)={1eλx0x>0x0,λ>0

性质

X ∼ E ( λ ) X\sim E(\lambda) XE(λ),则有

  • P { X > t } = ∫ t + ∞ λ e − λ t d t = e − λ t , t > 0 P \left\{X>t\right\}=\int_{t}^{+\infty}\lambda e^{-\lambda t}dt=e^{-\lambda t},t>0 P{X>t}=t+λeλtdt=eλt,t>0
  • P { X > t + s ∣ X > s } = P { X > t + s } P { X > s } = e − λ ( t + s ) e − λ s = e − λ t = P { X > t } , t , s > 0 P \left\{X>t+s|X>s\right\}=\frac{P \left\{X>t+s\right\}}{P \left\{X>s\right\}}=\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t}=P \left\{X>t\right\},t,s>0 P{X>t+sX>s}=P{X>s}P{X>t+s}=eλseλ(t+s)=eλt=P{X>t},t,s>0
    此性质称为指数分布具有无记忆性

八、正态分布

定义:如果随机变量 X X X的概率密度为
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu )^{2}}{2\sigma^{2}}},-\infty<x<+\infty f(x)=2π σ1e2σ2(xμ)2,<x<+
其中 μ , σ \mu ,\sigma μ,σ为常数且 σ > 0 \sigma>0 σ>0,则称 X X X服从参数为 μ , σ \mu ,\sigma μ,σ的正态分布,记作 X ∼ N ( μ , σ 2 ) X \sim N(\mu ,\sigma^{2}) XN(μ,σ2)
μ = 0 , σ 2 = 1 \mu =0,\sigma^{2}=1 μ=0,σ2=1时,即 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1),称 X X X服从标准正态分布,此时用 ϕ ( x ) \phi (x) ϕ(x)表示 X X X的概率密度,即
ϕ ( x ) = 1 2 π e − x 2 2 , − ∞ < x < + ∞ \phi (x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}},-\infty<x<+\infty ϕ(x)=2π 1e2x2,<x<+

标准化 X ∼ N ( μ , σ 2 ) X \sim N(\mu ,\sigma^{2}) XN(μ,σ2),则 x − μ σ ∼ N ( 0 , 1 ) \frac{x-\mu }{\sigma}\sim N(0,1) σxμN(0,1)

X ∼ N ( μ , σ 2 ) X \sim N(\mu ,\sigma^{2}) XN(μ,σ2),其分布函数为
F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{x}e^{- \frac{(t-\mu )^{2}}{2\sigma^{2}}}dt F(x)=2π σ1xe2σ2(tμ)2dt
X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1)时,分布函数用 Φ ( x ) \Phi (x) Φ(x)表示
Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \Phi (x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^{2}}{2}}dt Φ(x)=2π 1xe2t2dt

性质

X ∼ N ( μ , σ 2 ) X \sim N(\mu ,\sigma^{2}) XN(μ,σ2),其分布函数为 F ( x ) F(x) F(x),则

  • F ( x ) = P { X ≤ x } = P { X − μ σ ≤ x − μ σ } = Φ ( x − μ σ ) \begin{aligned} F(x)=P \left\{X \leq x\right\}=P \left\{\frac{X-\mu }{\sigma}\leq \frac{x-\mu }{\sigma}\right\}=\Phi (\frac{x-\mu }{\sigma})\end{aligned} F(x)=P{Xx}=P{σXμσxμ}=Φ(σxμ)
  • P { a < X ≤ b } = Φ ( b − μ σ ) − Φ ( a − μ σ ) , a < b \begin{aligned} P \left\{a<X \leq b\right\}=\Phi \left(\frac{b-\mu }{\sigma}\right)- \Phi \left(\frac{a-\mu }{\sigma}\right),a<b\end{aligned} P{a<Xb}=Φ(σbμ)Φ(σaμ),a<b
  • 概率密度 f ( x ) f(x) f(x)关于 x = μ x=\mu x=μ对称, ϕ ( x ) \phi (x) ϕ(x)是偶函数
  • Φ ( − x ) = 1 − Φ ( x ) \Phi (-x)=1-\Phi (x) Φ(x)=1Φ(x),也就有 Φ ( 0 ) = 1 2 \Phi (0)=\frac{1}{2} Φ(0)=21
  • X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1) a > 0 a>0 a>0时, P { ∣ X ∣ ≤ a } = 2 Φ ( a ) − 1 \begin{aligned} P \left\{|X| \leq a\right\}=2 \Phi (a)-1\end{aligned} P{Xa}=(a)1

例2:设随机变量 X 1 ∼ N ( μ 1 , σ 1 2 ) , X 2 ∼ N ( μ 2 , σ 2 2 ) X_{1}\sim N(\mu_{1},\sigma^{2}_{1}),X_{2}\sim N(\mu_{2},\sigma_{2}^{2}) X1N(μ1,σ12),X2N(μ2,σ22),且 P { ∣ X 1 − μ 1 ∣ < 1 } > P { ∣ X 2 − μ 2 ∣ < 1 } P \left\{|X_{1}-\mu_{1}|<1\right\}>P \left\{|X_{2}-\mu_{2}|<1\right\} P{X1μ1<1}>P{X2μ2<1},证明 σ 1 < σ 2 \sigma_{1}<\sigma_{2} σ1<σ2

一维正态题做题步骤:查表,标准化,对称性,定参数或系数

P { ∣ X 1 − μ 1 ∣ < 1 } = P { ∣ X 1 − μ 1 σ 1 ∣ ≤ 1 σ 1 } = 2 Φ ( 1 σ 1 ) − 1 P { ∣ X 2 − μ 2 ∣ < 1 } = 2 Φ ( 1 σ 2 ) − 1 \begin{aligned} P \left\{|X_{1}-\mu_{1}|<1\right\}&=P \left\{\left|\frac{X_{1}-\mu_{1}}{\sigma_{1}}\right|\leq \frac{1}{\sigma_{1}}\right\}=2\Phi \left(\frac{1}{\sigma_{1}}\right)-1\\ P \left\{|X_{2}-\mu_{2}|<1\right\}&=2\Phi \left(\frac{1}{\sigma_{2}}\right)-1 \end{aligned} P{X1μ1<1}P{X2μ2<1}=P{ σ1X1μ1 σ11}=(σ11)1=(σ21)1
由题意,有
2 Φ ( 1 σ 1 ) − 1 > 2 Φ ( 1 σ 2 ) − 1 1 σ 1 > 1 σ 2 σ 1 < σ 2 \begin{aligned} 2\Phi \left(\frac{1}{\sigma_{1}}\right)-1&>2\Phi \left(\frac{1}{\sigma_{2}}\right)-1\\ \frac{1}{\sigma_{1}}&>\frac{1}{\sigma_{2}}\\ \sigma_{1}&<\sigma_{2} \end{aligned} (σ11)1σ11σ1>(σ21)1>σ21<σ2

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值