目标
在这一章当中, 将学习不同的形态学操作,例如侵蚀,膨胀,开运算,闭运算等。 将看到不同的函数
cv2.erode()
cv2.dilate()
cv2.morphologyEx()
理论
形态变换是一些基于图像形状的简单操作。通常在二进制图像上执行。它需要两个输入,一个是原始图像,第二个是决定操作性质的结构元素或内核。两种基本的形态学算子是腐蚀和膨胀。然后,它的变体形式(如“打开”,“关闭”,“渐变”等)也开始起作用。在下图的帮助下,将一一看到它们:
腐蚀
腐蚀的基本思想就像土壤腐蚀一样,它腐蚀前景物体的边界(尽量使前景保持白色)。它是做什么的呢?内核滑动通过图像(在2D卷积中)。原始图像中的一个像素(无论是1还是0)只有当内核下的所有像素都是1时才被认为是1,否则它就会被腐蚀(变成0)。
结果是,根据内核的大小,边界附近的所有像素都会被丢弃。因此,前景物体的厚度或大小减小,或只是图像中的白色区域减小。它有助于去除小的白色噪声(正如我们在颜色空间章节中看到的),分离两个连接的对象等。
Syntax: cv2.erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]])
Parameters:
src: It is the image which is to be eroded .
kernel: A structuring element used for erosion. If element = Mat(), a 3 x 3 rectangular structuring element is used. Kernel can be created using getStructuringElement.
dst: It is the output image of the same size and type as src.
anchor: It is a variable of type integer representing anchor point and it’s default value Point is (-1, -1) which means that the anchor is at the kernel center.
borderType: It depicts what kind of border to be added. It is defined by flags like cv2.BORDER_CONSTANT, cv2.BORDER_REFLECT, etc.
iterations: It is number of times erosion is applied.
borderValue: It is border value in case of a constant border.
Return Value: It returns an image.
例子,将使用一个5x5内核,它包含了所有的1。让我们看看它是如何工作的:
# 腐蚀
import cv2
import numpy as np
img = cv2.imread('digit.png', 0)
kernel = np.ones((5, 5), np.uint8)
# iteration的值越高,模糊程度(腐蚀程度)就越高 呈正相关关系且只能是整数
erosion = cv2.erode(img, kernel, iterations=1)
cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
膨胀
它与腐蚀正好相反。如果内核下的至少有一个像素为“ 1”,则像素元素为“ 1”。因此,它会增加图像中的白色区域或增加前景对象的大小。通常,在消除噪音的情况下,腐蚀后会膨胀。因为腐蚀会消除白噪声,但也会缩小物体。因此,对其进行膨胀。由于噪音消失了,不会引起噪声,但是目标区域增加了。在连接对象的损坏部分时也很有用。
Syntax: cv2.dilate(src, kernel[, anchor[, iterations[, borderType[, borderValue]]]])
# 膨胀
import cv2
import numpy as np
img = cv2.imread('digit.png', 0)
kernel = np.ones((5, 5), np.uint8)
# iteration的值越高,膨胀程度就越高 呈正相关关系且只能是整数
dilate = cv2.dilate(img, kernel, iterations=1)
cv2.imshow('dilate', dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
开运算
开运算只是先腐蚀后膨胀的另一个名称。如上文所述,它对于消除噪音很有用。在这里,使用函数cv2.morphologyEx()
先加椒盐噪声: 加噪声代码见上一章
# 开运算,先腐蚀后膨胀
import cv2
import numpy as np
img = cv2.imread('digit-noise.jpg', 0)
kernel = np.ones((2, 2), np.uint8)
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
闭运算
闭运算与开运算相反,先膨胀后再腐蚀。在关闭前景对象内部的小孔或对象上的小黑点时很有用。
上一个开运算操作得到的结果里面有一点小黑点,正好使用闭运算进行操作
# 闭运算,先腐蚀后膨胀
import cv2
import numpy as np
img = cv2.imread('digit-open.jpg', 0)
kernel = np.ones((2, 2), np.uint8)
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果
形态学梯度
梯度运算,梯度=膨胀-腐蚀,结果将看起来像对象的轮廓
# 梯度运算
import cv2
import numpy as np
img = cv2.imread('digit.png', 0)
kernel = np.ones((5, 5), np.uint8)
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)
cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()
顶帽
是输入图像和图像开运算之差。下面的示例针对9x9内核完成。
# 顶帽
import cv2
import numpy as np
img = cv2.imread('digit.png', 0)
kernel = np.ones((9, 9), np.uint8)
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
黑帽
是输入图像和图像闭运算之差
# 黑帽
import cv2
import numpy as np
img = cv2.imread('digit.png', 0)
kernel = np.ones((9, 9), np.uint8)
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
结构元素
在Numpy的帮助下,在前面的示例中手动创建了一个结构元素, 它是矩形的。但是在某些情况下,可能需要椭圆形/圆形的内核。为此,OpenCV具有一个函数cv2.getStructuringElement()
。只需传递内核的形状和大小,即可获得所需的内核。
- 矩形内核
cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))
array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]], dtype=uint8)
- 椭圆内核
cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
array([[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0]], dtype=uint8)
- 十字内核
cv2.getStructuringElement(cv2.MORPH_CROSS,(5,5))
array([[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0]], dtype=uint8)