线性回归是回归问题,逻辑回归是分类问题。
线性回归
标签是连续的浮点数,比如基于房屋面积、位置等预测房价,基于历史天气预测天气等相关问题。预测公式如下:
Y
=
X
∗
W
+
b
Y = X*W + b
Y=X∗W+b
逻辑回归
对于线性可分的情况下,用一条直线能够将两类数据区分开来,比如:
假设在这条红线的左上方的标签为1, 红线的右下方标签为0,则
X
1
X_1
X1与
X
3
X_3
X3属于1,
X
2
X_2
X2属于0类。
但是这种方式不是很直观,有没有更好的方式呢?答案是有的,通过逻辑函数来进一步规范化
上述是逻辑函数,作用是将z的值进行映射,映射范围是
[
0
,
1
]
[0,~1]
[0, 1]:
- 如果z的值大于0, 则经过逻辑函数处理后,范围为 [ 0.5 , 1 ] [0.5, 1] [0.5,1]
- 如果z的值小于0, 则经过逻辑函数处理后,范围为 [ 0 , 0.5 ] [0, 0.5] [0,0.5]
现在就能计算出每个点离那类的概率问题:
可以看到,
X
1
X_1
X1点属于1的概率大于
X
1
X_1
X1点属于0的概率。