解的存在唯一性定理与逐步逼近法

利普希茨条件

d y d x = f ( x , y ) \frac{dy}{dx}=f(x,y) dxdy=f(x,y)
f ( x , y ) f(x,y) f(x,y)的定义:在矩形域 R : ∣ x − x 0 ∣ ≤ a , ∣ y − y 0 ∣ ≤ b R:|x-x_0|\le a,|y-y_0|\le b R:xx0a,yy0b上的连续函数

  • ∃ 常 数 L > 0 \exist 常数L>0 L>0
  • ∀ ( x , y 1 ) , ( x , y 2 ) ∈ R \forall (x,y_1),(x,y_2)\in R (x,y1),(x,y2)R都满足: ∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ ≤ L ∣ y 1 − y 2 ∣ |f(x,y_1)-f(x,y_2)|\le L|y_1-y_2| f(x,y1)f(x,y2)Ly1y2 f ( x , y ) f(x,y) f(x,y)称为在 R R R上关于y满足利普希茨条件( L i p s c h i t z \mathscr{Lipschitz} Lipschitz
  • L L L称为 L i p s c h i t z \mathscr{Lipschitz} Lipschitz常数

定理1

  • f ( x , y ) f(x,y) f(x,y) R R R上连续
  • 关于 y y y满足利普希茨条件
  • 则方程 d y d x = f ( x , y ) \frac{dy}{dx}=f(x,y) dxdy=f(x,y)存在唯一解 y = φ ( x ) , ∣ x − x 0 ∣ ≤ h y=\varphi(x),|x-x_0|\le h y=φ(x),xx0h该解连续且满足初值条件 φ ( x 0 ) = y 0 \varphi(x_0)=y_0 φ(x0)=y0
  • 其中,这里的 M = m a x ( x , y ) ∈ R ∣ f ( x , y ) ∣ , h = min ⁡ { a , b M } M=\mathop{max}\limits_{(x,y)\in R}|f(x,y)|,h=\min \{a,\frac{b}{M}\} M=(x,y)Rmaxf(x,y),h=min{a,Mb}

证明思路

  • 运用皮卡的逐步逼近法:首先证明求以上微分方程的初值问题的解 ⇔ \Leftrightarrow 求积分方程 y = y 0 + ∫ x 0 x f ( x , y ) d x y=y_0+\int_{x_0}^xf(x,y)dx y=y0+x0xf(x,y)dx的连续解
    • 任取一个连续函数 φ 0 ( x ) \varphi_0(x) φ0(x)代入积分方程右边的 y y y中,得到 φ 1 ( x ) = y 0 + ∫ x 0 x f ( x , φ 0 ( x ) ) d x \varphi_{1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, \varphi_{0}(x)\right) \mathrm{d} x φ1(x)=y0+x0xf(x,φ0(x))dx明显 φ 1 ( x ) \varphi_1(x) φ1(x)连续,若 φ 1 ( x ) = φ 0 ( x ) \varphi_1(x)=\varphi_0(x) φ1(x)=φ0(x),则 φ 0 ( x ) \varphi_0(x) φ0(x)是积分方程的解
    • 若不等,则将 φ 1 ( x ) \varphi_1(x) φ1(x)再代入积分方程右边的 y y y中,得 φ 2 ( x ) \varphi_2(x) φ2(x)。。。。。。以此类推,得到函数列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)},其中 φ n ( x ) = y 0 + ∫ x 0 x f ( x , φ n − 1 ( x ) ) d x \varphi_{n}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, \varphi_{n-1}(x)\right) \mathrm{d} x φn(x)=y0+x0xf(x,φn1(x))dx每一项都连续,若存在 φ n ( x ) = φ n + 1 ( x ) \varphi_n(x)=\varphi_{n+1}(x) φn(x)=φn+1(x),则 φ n ( x ) \varphi_n(x) φn(x)为方程的解
    • 若不存在这样的 φ n ( x ) \varphi_n(x) φn(x),则证明该函数列一致收敛,于是有一个连续的极限函数 φ ( x ) \varphi(x) φ(x)使得 lim ⁡ n → ∞ φ n ( x ) = φ ( x ) \lim\limits_{n\to \infty}\varphi_n(x)=\varphi(x) nlimφn(x)=φ(x)
      • φ n ( x ) \varphi_n(x) φn(x)两边求极限得到 φ ( x ) = y 0 + ∫ x 0 x f ( x , φ ( x ) ) d x \varphi(x)=y_{0}+\int_{x_{0}}^{x} f(x, \varphi(x)) \mathrm{d} x φ(x)=y0+x0xf(x,φ(x))dx这是方程的解
    • 这样的逼近法确定的 φ n ( x ) \varphi_n(x) φn(x)称为方程的第 n n n次近似解
  • 证明解的存在性,唯一性

要证明存在唯一性定理,需要证明4个命题

命题1

证明 ——积分方程与微分方程同解

  • y = φ ( x ) ( x 0 ≤ x ≤ x 0 + h ) y=\varphi(x)(x_0\le x\le x_0+h) y=φ(x)(x0xx0+h)
    • 满足初值条件 φ ( x 0 ) = y 0 \varphi(x_0)=y_0 φ(x0)=y0
    • 是方程 d y d x = f ( x , y ) (1) \frac{dy}{dx}=f(x,y)\tag{1} dxdy=f(x,y)(1)的解
  • y = φ ( x ) y=\varphi(x) y=φ(x)也是积分方程 y = y 0 + ∫ x 0 x f ( x , y ) d x , x 0 ⩽ x ⩽ x 0 + h (2) y=y_{0}+\int_{x_{0}}^{x} f(x, y) \mathrm{d} x, x_{0} \leqslant x \leqslant x_{0}+h\tag{2} y=y0+x0xf(x,y)dx,x0xx0+h(2)的连续解
  • 反之亦然

证明

  • y = φ ( x ) y=\varphi(x) y=φ(x)是(1)的解,则 d φ ( x ) d x = f ( x , φ ( x ) ) \frac{\mathrm{d} \varphi(x)}{\mathrm{d} x}=f(x, \varphi(x)) dxdφ(x)=f(x,φ(x))证明这个解也是积分方程的解
  • 两边从 x 0 到 x x_0到x x0x取积分: φ ( x ) − φ ( x 0 ) = ∫ x 0 x f ( x , φ ( x ) ) d x , x 0 ⩽ x ⩽ x 0 + h \varphi(x)-\varphi\left(x_{0}\right)=\int_{x_{0}}^{x} f(x, \varphi(x)) \mathrm{d} x, \quad x_{0} \leqslant x \leqslant x_{0}+h φ(x)φ(x0)=x0xf(x,φ(x))dx,x0xx0+h φ ( x 0 ) = y 0 \varphi(x_0)=y_0 φ(x0)=y0,得 φ ( x ) = y 0 + ∫ x 0 x f ( x , φ ( x ) ) d x , x 0 ⩽ x ⩽ x 0 + h \varphi(x)=y_{0}+\int_{x_{0}}^{x} f(x, \varphi(x)) \mathrm{d} x, \quad x_{0} \leqslant x \leqslant x_{0}+h φ(x)=y0+x0xf(x,φ(x))dx,x0xx0+h因此 y = φ ( x ) y=\varphi(x) y=φ(x)是积分方程的连续解
  • 反之,不证了

由逐步逼近法构造函数: { φ 0 ( x ) = y 0 φ n ( x ) = y 0 + ∫ x 0 x f ( ξ , φ n − 1 ( ξ ) ) d ξ , x 0 ⩽ x ⩽ x 0 + h ( n = 1 , 2 , ⋯   ) \left\{\begin{aligned} \varphi_{0}(x)=& y_{0} \\ \varphi_{n}(x)=y_{0}+\int_{x_{0}}^{x} f\left(\xi, \varphi_{n-1}(\xi)\right) \mathrm{d} \xi, & x_{0} \leqslant x \leqslant x_{0}+h \\ &(n=1,2, \cdots) \end{aligned}\right. φ0(x)=φn(x)=y0+x0xf(ξ,φn1(ξ))dξ,y0x0xx0+h(n=1,2,)

命题2

  • ∀ n , φ n ( x ) \forall n,\varphi_n(x) n,φn(x) x 0 ≤ x ≤ x 0 + h x_0\le x\le x_0+h x0xx0+h上有定义且连续
  • 并且满足: ∣ φ n ( x ) − y 0 ∣ ≤ b |\varphi_n(x)-y_0|\le b φn(x)y0b

证明

数学归纳法

  • n = 1 n=1 n=1 φ 1 ( x ) = y 0 + ∫ x 0 x f ( ξ , y 0 ) d ξ \varphi_{1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(\xi, y_{0}\right) d \xi φ1(x)=y0+x0xf(ξ,y0)dξ φ 1 ( x ) \varphi_1(x) φ1(x) x 0 ≤ x ≤ x 0 + h x_0\le x\le x_0+h x0xx0+h上有定义且连续且有 ∣ φ 1 ( x ) − y 0 ∣ = ∣ ∫ x 0 x f ( ξ , y 0 ) d ξ ∣ ⩽ ∫ x 0 x ∣ f ( ξ , y 0 ) ∣ d ξ ⩽ M ( x − x 0 ) ⩽ M h ⩽ b \begin{aligned} \left|\varphi_{1}(x)-y_{0}\right| &=\left|\int_{x_{0}}^{x} f\left(\xi, y_{0}\right) \mathrm{d} \xi\right| \\ & \leqslant \int_{x_{0}}^{x}\left|f\left(\xi, y_{0}\right)\right| \mathrm{d} \xi \\ & \leqslant M\left(x-x_{0}\right) \leqslant M h \leqslant b \end{aligned} φ1(x)y0=x0xf(ξ,y0)dξx0xf(ξ,y0)dξM(xx0)Mhb
  • 然后假设 n = k n=k n=k φ k ( x ) \varphi_k(x) φk(x)满足上面的结论,证 n = k + 1 n=k+1 n=k+1时也满足

命题3

  • 函数序列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} x 0 ≤ x ≤ x 0 + h x_0\le x\le x_0+h x0xx0+h上一致收敛

证明

  • 考虑一个级数 φ 0 ( x ) + ∑ k = 1 ∞ [ φ k ( x ) − φ k − 1 ( x ) ] , x 0 ⩽ x ⩽ x 0 + h (1) \varphi_{0}(x)+\sum_{k=1}^{\infty}\left[\varphi_{k}(x)-\varphi_{k-1}(x)\right], x_{0} \leqslant x \leqslant x_{0}+h\tag{1} φ0(x)+k=1[φk(x)φk1(x)],x0xx0+h(1)
  • 其中 φ n ( x ) = φ 0 ( x ) + ∑ k = 1 n [ φ k ( x ) − φ k − 1 ( x ) ] , x 0 ⩽ x ⩽ x 0 + h \varphi_n(x)=\varphi_{0}(x)+\sum_{k=1}^{n}\left[\varphi_{k}(x)-\varphi_{k-1}(x)\right], x_{0} \leqslant x \leqslant x_{0}+h φn(x)=φ0(x)+k=1n[φk(x)φk1(x)],x0xx0+h
  • 于是:证明 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} x 0 ≤ x ≤ x 0 + h x_0\le x\le x_0+h x0xx0+h上一致收敛 ⇔ \Leftrightarrow 级数一致收敛
  • 考虑使用优级数判别法: ∣ φ 1 ( x ) − φ 0 ( x ) ∣ ≤ ∫ x 0 x ∣ f ( ξ , φ 0 ( ξ ) ) ∣ d ξ ≤ M ∣ x − x 0 ∣ |\varphi_1(x)-\varphi_0(x)|\le \int_{x_0}^{x}|f(\xi,\varphi_0(\xi))|d\xi\le M|x-x_0| φ1(x)φ0(x)x0xf(ξ,φ0(ξ))dξMxx0 ∣ φ 2 ( x ) − φ 1 ( x ) ∣ ≤ ∫ x 0 x ∣ f ( ξ , φ 1 ( ξ ) ) − f ( ξ , φ 0 ( ξ ) ) ∣ d ξ |\varphi_2(x)-\varphi_1(x)|\le \int_{x_0}^{x}|f(\xi,\varphi_1(\xi))-f(\xi,\varphi_0(\xi))|d\xi φ2(x)φ1(x)x0xf(ξ,φ1(ξ))f(ξ,φ0(ξ))dξ ≤ ∫ x 0 x L ∣ φ 1 ( ξ ) − φ 0 ( ξ ) ∣ d ξ ≤ L ∫ x 0 x M ( ξ − x 0 ) d ξ = M L 2 ! ( x − x 0 ) 2 \le \int_{x_0}^xL|\varphi_1(\xi)-\varphi_0(\xi)|d\xi\le L\int_{x_0}^xM(\xi-x_0)d\xi=\frac{ML}{2!}(x-x_0)^2 x0xLφ1(ξ)φ0(ξ)dξLx0xM(ξx0)dξ=2!ML(xx0)2则对 n n n ∣ φ n ( x ) − φ n − 1 ( x ) ∣ ≤ M L n − 1 n ! ( x − x 0 ) n |\varphi_n(x)-\varphi_{n-1}(x)|\le \frac{ML^{n-1}}{n!}(x-x_0)^n φn(x)φn1(x)n!MLn1(xx0)n ∣ φ n + 1 ( x ) − φ n ( x ) ∣ ≤ M L n ( n + 1 ) ! ( x − x 0 ) n + 1 |\varphi_{n+1}(x)-\varphi_{n}(x)|\le \frac{ML^{n}}{(n+1)!}(x-x_0)^{n+1} φn+1(x)φn(x)(n+1)!MLn(xx0)n+1
  • 由于 ∑ n = 1 ∞ M L k − 1 h k k ! \sum\limits_{n=1}^{\infty}ML^{k-1}\frac{h^k}{k!} n=1MLk1k!hk是正项收敛级数,因此由魏氏判别法得,级数(1)一致收敛,设 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)}的极限函数为 φ ( x ) \varphi(x) φ(x),则ta连续,且有 ∣ φ ( x ) − y 0 ∣ ≤ b |\varphi(x)-y_0|\le b φ(x)y0b

命题4

  • φ ( x ) \varphi(x) φ(x)是积分方程在 x 0 ≤ x ≤ x 0 + h x_0\le x\le x_0+h x0xx0+h上的连续解

证明

  • 由命题3得 lim ⁡ n → ∞ φ n ( x ) = φ ( x ) \lim\limits_{n\to\infty}\varphi_n(x)=\varphi(x) nlimφn(x)=φ(x),证明: f ( x , φ n ( x ) ) ⇉ f ( x , φ ( x ) ) f(x,\varphi_n(x))\rightrightarrows f(x,\varphi(x)) f(x,φn(x))f(x,φ(x)) ∣ f ( x , φ n ( x ) ) − f ( x , φ ( x ) ) ∣ ≤ L ∣ φ n ( x ) − φ ( x ) ∣ |f(x,\varphi_n(x))-f(x,\varphi(x))|\le L|\varphi_n(x)-\varphi(x)| f(x,φn(x))f(x,φ(x))Lφn(x)φ(x)
  • 于是,对 φ n ( x ) \varphi_n(x) φn(x)表达式两边取极限:在这里插入图片描述
  • 于是有 φ ( x ) = y 0 + ∫ x 0 x f ( ξ , φ ( ξ ) ) d ξ \varphi(x)=y_0+\int_{x_0}^xf(\xi,\varphi(\xi))d\xi φ(x)=y0+x0xf(ξ,φ(ξ))dξ因此 φ ( x ) \varphi(x) φ(x)是积分方程的连续解

命题5

证明解的唯一性:

  • ψ ( x ) \psi(x) ψ(x)是积分方程在区间上的另一个连续解,则 φ ( x ) = ψ ( x ) \varphi(x)=\psi(x) φ(x)=ψ(x)

证明

  • 首先证明 ψ ( x ) \psi(x) ψ(x)是序列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)}的一致收敛极限函数,由于 ψ ( x ) \psi(x) ψ(x)满足 ψ ( x ) = y 0 + ∫ x 0 x f ( ξ , ψ ( ξ ) ) d ξ \psi(x)=y_0+\int_{x_0}^xf(\xi,\psi(\xi))d\xi ψ(x)=y0+x0xf(ξ,ψ(ξ))dξ
  • ∣ φ 0 ( x ) − ψ ( x ) ∣ ≤ ∫ x 0 x ∣ f ( ξ , ψ ( ξ ) ) ∣ d ξ ≤ M ( x − x 0 ) |\varphi_0(x)-\psi(x)|\le \int_{x_0}^x|f(\xi,\psi(\xi))|d\xi\le M(x-x_0) φ0(x)ψ(x)x0xf(ξ,ψ(ξ))dξM(xx0) ∣ φ 1 ( x ) − ψ ( x ) ∣ ≤ ∫ x 0 x ∣ f ( ξ , φ 0 ( ξ ) ) − f ( ξ , ψ ( ξ ) ) ∣ d ξ ≤ M L 2 ! ( x − x 0 ) 2 |\varphi_1(x)-\psi(x)|\le \int_{x_0}^x|f(\xi,\varphi_0(\xi))-f(\xi,\psi(\xi))|d\xi\le \frac{ML}{2!}(x-x_0)^2 φ1(x)ψ(x)x0xf(ξ,φ0(ξ))f(ξ,ψ(ξ))dξ2!ML(xx0)2
  • 类推,得到 ∣ φ n ( x ) − ψ ( x ) ∣ ≤ ∫ x 0 x ∣ f ( ξ , φ n − 1 ( ξ ) ) − f ( ξ , ψ ( ξ ) ) ∣ d ξ ≤ M L n ( n + 1 ) ! ( x − x 0 ) n + 1 |\varphi_n(x)-\psi(x)|\le \int_{x_0}^x|f(\xi,\varphi_{n-1}(\xi))-f(\xi,\psi(\xi))|d\xi\le \frac{ML^n}{(n+1)!}(x-x_0)^{n+1} φn(x)ψ(x)x0xf(ξ,φn1(ξ))f(ξ,ψ(ξ))dξ(n+1)!MLn(xx0)n+1所以得到 φ n ( x ) ⇉ ψ ( x ) \varphi_n(x)\rightrightarrows \psi(x) φn(x)ψ(x),由极限函数得到唯一性,得 ψ = φ \psi=\varphi ψ=φ
  • 18
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

universe_1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值