一、一阶常微分方程解的的存在与唯一性定理
导数已解出的一阶常微分方程可以表示为如下的一般形式:
{
d
y
d
x
=
f
(
x
,
y
)
y
(
x
0
)
=
y
0
(1)
\begin{cases} \frac{dy}{dx}=f(x,y) \\ y(x_0)=y_0 \tag{1} \end{cases}
{dxdy=f(x,y)y(x0)=y0(1)
对于这类定解问题,有以下解的存在与唯一性定理。
**解的存在与唯一性定理:**如果
f
(
x
,
y
)
f(x,y)
f(x,y)和
∂
f
∂
y
(
x
,
y
)
\frac{\partial f}{\partial y}(x,y)
∂y∂f(x,y)在矩形区域
{
(
x
,
y
)
∣
∣
x
−
x
0
∣
<
a
,
∣
y
−
y
0
∣
<
b
}
\{(x,y)||x-x_0|<a,|y-y_0|<b\}
{(x,y)∣∣x−x0∣<a,∣y−y0∣<b}上连续,那么存在一个正数
h
(
0
<
h
≤
a
)
h(0<h\leq a)
h(0<h≤a),使得定解问题(1)在
∣
x
−
x
0
∣
<
h
|x-x_0|<h
∣x−x0∣<h上有唯一的解
y
=
φ
(
x
)
y=\varphi(x)
y=φ(x),即在
∣
x
−
x
0
∣
<
h
|x-x_0|<h
∣x−x0∣<h上有
φ
′
(
x
)
=
f
(
x
,
φ
(
x
)
)
\varphi'(x)=f(x,\varphi(x))
φ′(x)=f(x,φ(x))
成立,且
φ
(
x
0
)
=
y
0
\varphi(x_0)=y_0
φ(x0)=y0
在这个定理中,只说明了在局部的解的存在性和唯一性,而且也没有说明解的表达式如何。事实上,并不是每个一阶常微分方程的解都可以用初等函数或它们的有限次积分来表达(这种方法称为初等积分法)。例如方程
y
′
=
y
2
+
x
y'=y^2+x
y′=y2+x不能用初等积分法来求解,虽然看上去形式很简单。
二、变量可分离方程
若一阶方程
d
y
d
x
=
f
(
x
,
y
)
\frac{dy}{dx}=f(x,y)
dxdy=f(x,y)中的
f
(
x
,
y
)
f(x,y)
f(x,y)可以分解成x的函数
g
(
x
)
g(x)
g(x)与y的函数
h
(
y
)
h(y)
h(y)的乘积,即
d
y
d
x
=
g
(
x
)
⋅
h
(
y
)
(2)
\frac{dy}{dx}=g(x)·h(y) \tag{2}
dxdy=g(x)⋅h(y)(2)
则称其为变量可分离方程。
若
g
(
x
)
g(x)
g(x)与
h
(
y
)
h(y)
h(y)连续,把原方程改写成
d
y
h
(
y
)
=
g
(
x
)
d
x
\frac{dy}{h(y)}=g(x)dx
h(y)dy=g(x)dx
对两边取不定积分,得
∫
d
y
h
(
y
)
=
∫
g
(
x
)
d
x
\int \frac{dy}{h(y)}=\int g(x)dx
∫h(y)dy=∫g(x)dx
若
G
(
x
)
G(x)
G(x)是
g
(
x
)
g(x)
g(x)的一个原函数,
H
(
y
)
H(y)
H(y)是
1
h
(
y
)
\frac{1}{h(y)}
h(y)1的一个原函数,就得到方程的通解
H
(
y
)
=
G
(
x
)
+
C
H(y)=G(x)+C
H(y)=G(x)+C
这里C是任意常数。这种形式的解也称为隐式解。
若 y 0 y_0 y0是方程 h ( y ) = 0 h(y)=0 h(y)=0的根,函数 y = y 0 y=y_0 y=y0也是方程(2)的解,而且这个解并不一定包含在通解的表达式中。
例1:求解微分方程
(
d
y
d
x
)
2
+
y
2
=
1
(\frac{dy}{dx})^2+y^2=1
(dxdy)2+y2=1
解:将此方程化为变量可分离方程
d
y
d
x
=
±
1
−
y
2
\frac{dy}{dx}= \pm \sqrt{1-y^2}
dxdy=±1−y2
即
d
y
1
−
y
2
=
±
d
x
\frac{dy}{\sqrt{1-y^2}}=\pm dx
1−y2dy=±dx
两边积分得
a
r
c
s
i
n
y
=
±
x
+
C
arc\space siny = \pm x+ C
arc siny=±x+C
即
y
=
s
i
n
(
x
+
C
)
y = sin(x+C)
y=sin(x+C)
注意
y
=
±
1
y=\pm 1
y=±1也是方程的两个解,但他们并不在通解之中。
例2:解定解问题
{
s
i
n
x
d
y
d
x
=
y
l
n
y
y
(
π
2
)
=
e
\begin{cases} sin\space x\frac{dy}{dx} = ylny \\ y(\frac{\pi}{2})=e \end{cases}
{sin xdxdy=ylnyy(2π)=e
**解:**将此方程化为
d
y
y
l
n
y
=
d
x
s
i
n
x
\frac{dy}{ylny}=\frac{dx}{sinx}
ylnydy=sinxdx
两边积分得
l
n
l
n
y
=
l
n
(
c
s
c
x
−
c
o
t
x
)
+
l
n
C
ln \space lny=ln(csc\space x-cot\space x)+lnC
ln lny=ln(csc x−cot x)+lnC
即
l
n
y
=
C
(
c
s
c
x
−
c
o
t
x
)
lny=C(csc\space x-cot\space x)
lny=C(csc x−cot x)
由
y
(
π
2
)
=
e
y(\frac{\pi}{2})=e
y(2π)=e得
C
=
1
C=1
C=1。因此定解问题得解为
y
=
e
c
s
c
x
−
c
o
t
x
y=e^{csc \space x-cot\space x}
y=ecsc x−cot x
例3:设函数
f
f
f在
(
0
,
+
∞
)
(0,+\infty)
(0,+∞)上可导,且满足
∫
1
x
f
(
t
)
d
t
=
(
x
3
+
x
2
)
f
(
x
)
−
2
\int_1^{x}f(t)dt=(x^3+x^2)f(x)-2
∫1xf(t)dt=(x3+x2)f(x)−2
求
f
(
x
)
f(x)
f(x)。
解:显然
f
(
1
)
=
1
f(1)=1
f(1)=1。对
∫
1
x
f
(
t
)
d
t
=
(
x
3
+
x
2
)
f
(
x
)
−
2
\int_1^xf(t)dt=(x^3+x^2)f(x)-2
∫1xf(t)dt=(x3+x2)f(x)−2两边求导得
f
(
x
)
=
(
x
3
+
x
2
)
f
′
(
x
)
+
(
3
x
2
+
2
x
)
f
(
x
)
f(x)=(x^3+x^2)f'(x)+(3x^2+2x)f(x)
f(x)=(x3+x2)f′(x)+(3x2+2x)f(x)
因此,函数f满足方程
(
x
3
+
x
2
)
y
′
=
[
1
−
(
3
x
2
+
2
x
)
]
y
(x^3+x^2)y'=[1-(3x^2+2x)]y
(x3+x2)y′=[1−(3x2+2x)]y
对方程分离变量得
d
y
y
=
(
1
x
3
+
x
2
−
3
x
2
+
2
x
x
3
+
x
2
)
d
x
\frac{dy}{y}=(\frac{1}{x^3+x^2}-\frac{3x^2+2x}{x^3+x^2})dx
ydy=(x3+x21−x3+x23x2+2x)dx
两边积分的
l
n
y
=
∫
(
1
x
3
+
x
2
−
3
x
2
+
2
x
x
3
+
x
2
)
d
x
=
l
n
(
1
+
x
)
−
l
n
x
−
1
x
−
l
n
(
x
3
+
x
2
)
+
l
n
C
ln y =\int(\frac{1}{x^3+x^2}-\frac{3x^2+2x}{x^3+x^2})dx \\ =ln(1+x)-lnx-\frac{1}{x}-ln(x^3+x^2)+lnC
lny=∫(x3+x21−x3+x23x2+2x)dx=ln(1+x)−lnx−x1−ln(x3+x2)+lnC
所以
y
=
C
1
x
3
e
−
1
x
y=C\frac{1}{x^3}e^{-\frac{1}{x}}
y=Cx31e−x1
因此f就具有上述形式。又由
f
(
1
)
=
1
f(1)=1
f(1)=1得
C
=
e
C=e
C=e,所以
f
(
x
)
=
1
x
3
e
1
−
1
x
,
x
∈
(
0
,
+
∞
)
f(x)=\frac{1}{x^3}e^{1-\frac{1}{x}}, \quad x\in (0,+\infty)
f(x)=x31e1−x1,x∈(0,+∞)
三、齐次方程
若对于任何
τ
≠
0
\tau \neq 0
τ=0
f
(
τ
x
,
τ
y
)
=
f
(
x
,
y
)
f(\tau x,\tau y)=f(x,y)
f(τx,τy)=f(x,y)
则称函数
f
(
x
,
y
)
f(x,y)
f(x,y)为(0次)齐次函数,相应的微分方程
d
y
d
x
=
f
(
x
,
y
)
\frac{dy}{dx}=f(x,y)
dxdy=f(x,y)
相应地称为齐次方程。
令
y
=
u
x
y=ux
y=ux,代入方程得
d
(
u
x
)
d
x
=
u
+
x
d
u
d
x
=
f
(
x
,
u
x
)
=
f
(
1
,
u
)
\frac{d(ux)}{dx}=u+x\frac{du}{dx}=f(x,ux)=f(1,u)
dxd(ux)=u+xdxdu=f(x,ux)=f(1,u)
化简后,变量可分离方程为
x
d
u
d
x
=
f
(
1
,
u
)
−
u
x\frac{du}{dx}=f(1,u)-u
xdxdu=f(1,u)−u
解出方程后,用
u
=
y
x
u=\frac{y}{x}
u=xy代入便得到方程的解。
**例1:**求方程
(
x
y
−
y
2
)
d
x
−
(
x
2
−
2
x
y
)
d
y
=
0
(xy-y^2)dx-(x^2-2xy)dy=0
(xy−y2)dx−(x2−2xy)dy=0
的通解。
解:将方程写成
d
y
d
x
=
x
y
−
y
2
x
2
−
2
x
y
\frac{dy}{dx}=\frac{xy-y^2}{x^2-2xy}
dxdy=x2−2xyxy−y2
容易判断,这是一个齐次方程。令
y
=
u
x
y=ux
y=ux,得到
x
d
u
d
x
=
u
−
u
2
1
−
2
u
−
u
=
u
2
1
−
2
u
x\frac{du}{dx}=\frac{u-u^2}{1-2u}-u=\frac{u^2}{1-2u}
xdxdu=1−2uu−u2−u=1−2uu2
于是
1
−
2
u
u
2
d
u
=
1
x
d
x
\frac{1-2u}{u^2}du=\frac{1}{x}dx
u21−2udu=x1dx
解此方程得
−
1
u
−
2
l
n
u
=
l
n
x
+
C
-\frac{1}{u}-2lnu=lnx +C
−u1−2lnu=lnx+C
用
u
=
y
x
u=\frac{y}{x}
u=xy代入,便得到方程的隐式通解为
x
y
+
2
l
n
y
−
l
n
x
+
C
=
0
\frac{x}{y}+2lny-lnx+C=0
yx+2lny−lnx+C=0
对于形如
d
y
d
x
=
a
1
x
+
b
1
y
+
c
1
a
2
x
+
b
2
y
+
c
2
\frac{dy}{dx}=\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}
dxdy=a2x+b2y+c2a1x+b1y+c1
的方程,显然,当
c
1
=
c
2
=
0
c_1=c_2=0
c1=c2=0时,这是齐次方程。
当
c
1
,
c
2
c_1,c_2
c1,c2不全为零时,若行列式
∣
a
1
b
1
a
2
b
2
∣
≠
0
\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0
∣∣∣∣a1a2b1b2∣∣∣∣=0,作变换
{
x
=
x
^
−
ξ
y
=
y
^
−
η
\begin{cases} x= \hat x - \xi \\ y= \hat y - \eta \end{cases}
{x=x^−ξy=y^−η
将方程变为
d
y
^
d
x
^
=
a
1
x
^
+
b
1
y
^
−
(
a
1
ξ
+
b
1
η
−
c
1
)
a
2
x
^
+
b
2
y
^
−
(
a
2
ξ
+
b
2
η
−
c
2
)
\frac{d\hat y}{d\hat x}=\frac{a_1 \hat x + b_1\hat y-(a_1\xi+b_1\eta-c_1)}{a_2\hat x+b_2\hat y-(a_2\xi+b_2\eta-c_2)}
dx^dy^=a2x^+b2y^−(a2ξ+b2η−c2)a1x^+b1y^−(a1ξ+b1η−c1)
从线性代数方程组
{
a
1
ξ
+
b
1
η
=
c
1
a
2
ξ
+
b
2
η
=
c
2
\begin{cases} a_1\xi + b_1\eta = c_1 \\ a_2\xi + b_2\eta = c_2 \end{cases}
{a1ξ+b1η=c1a2ξ+b2η=c2
中解出
ξ
,
η
\xi,\eta
ξ,η,就得到了关于
x
^
,
y
^
\hat x,\hat y
x^,y^的齐次方程
d
y
^
d
x
^
=
a
1
x
^
+
b
1
y
^
a
2
x
^
+
b
2
y
^
\frac{d \hat y}{d\hat x}=\frac{a_1\hat x+b_1\hat y}{a_2\hat x+b_2\hat y}
dx^dy^=a2x^+b2y^a1x^+b1y^
若行列式
∣
a
1
b
1
a
2
b
2
∣
=
0
\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0
∣∣∣∣a1a2b1b2∣∣∣∣=0,则两行对应成比例。若
b
1
,
b
2
b_1,b_2
b1,b2全为零,那么原方程为
d
y
d
x
=
a
1
x
+
c
1
a
2
x
+
c
2
\frac{dy}{dx}=\frac{a_1x+c_1}{a_2x+c_2}
dxdy=a2x+c2a1x+c1
它是可解的。若
b
1
,
b
2
b_1,b_2
b1,b2不全为零,不妨设
b
1
≠
=
0
b_1\neq = 0
b1==0,设
λ
\lambda
λ是常数使得
(
a
2
,
b
2
)
=
λ
(
a
1
,
b
1
)
(a_2,b_2)=\lambda(a_1,b_1)
(a2,b2)=λ(a1,b1)。令
u
=
a
1
x
+
b
1
y
u=a_1x+b_1y
u=a1x+b1y,则
d
u
d
x
=
a
1
+
b
1
d
y
d
x
=
a
1
+
b
1
a
1
x
+
b
1
y
+
c
a
2
x
+
b
2
y
+
c
2
=
a
1
+
b
1
u
+
c
1
λ
u
+
c
2
\frac{du}{dx}=a_1+b_1\frac{dy}{dx}=a_1+b_1\frac{a_1x+b_1y+c}{a_2x+b_2y+c_2}=a_1+b_1\frac{u+c_1}{\lambda u+c_2}
dxdu=a1+b1dxdy=a1+b1a2x+b2y+c2a1x+b1y+c=a1+b1λu+c2u+c1
因此上述方程变为变量可分离方程。
综上所述,形式为
d
y
d
x
=
a
1
x
+
b
1
y
+
c
1
a
2
x
+
b
2
+
c
2
\frac{dy}{dx}=\frac{a_1x+b_1y+c_1}{a_2x+b_2+c_2}
dxdy=a2x+b2+c2a1x+b1y+c1
的微分方程总是可解的,并且可以推广到
d
y
d
x
=
f
(
a
1
x
+
b
1
y
+
c
1
a
2
x
+
b
2
y
+
c
2
)
\frac{dy}{dx}=f(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2})
dxdy=f(a2x+b2y+c2a1x+b1y+c1)
例2:求方程
(
2
x
−
5
y
+
3
)
d
x
−
(
2
x
+
4
y
−
6
)
d
y
=
0
(2x-5y+3)dx-(2x+4y-6)dy=0
(2x−5y+3)dx−(2x+4y−6)dy=0
的通解。
解:由于行列式
∣
a
1
b
1
a
2
b
2
∣
=
∣
2
−
5
2
4
∣
≠
0
\begin{vmatrix}a_1 & b_1 \\a_2 & b_2 \end{vmatrix} =\begin{vmatrix}2 & -5 \\2 & 4\end{vmatrix}\neq 0
∣∣∣∣a1a2b1b2∣∣∣∣=∣∣∣∣22−54∣∣∣∣=0
由线性代数方程组
{
2
ξ
−
5
η
=
3
2
ξ
+
4
η
=
−
6
\begin{cases} 2\xi - 5\eta =3 \\ 2\xi + 4\eta =-6 \end{cases}
{2ξ−5η=32ξ+4η=−6
解出
ξ
=
η
=
−
1
\xi=\eta=-1
ξ=η=−1。作变换
{
x
=
x
^
−
ξ
=
x
^
+
1
y
=
y
^
−
η
=
y
^
+
1
\begin{cases} x=\hat x-\xi=\hat x+1 \\ y=\hat y-\eta=\hat y+1 \end{cases}
{x=x^−ξ=x^+1y=y^−η=y^+1
得到齐次方程
y
^
x
^
=
2
x
^
−
5
y
^
2
x
^
+
4
y
^
\frac{\hat y}{\hat x}=\frac{2\hat x-5\hat y}{2\hat x+4\hat y}
x^y^=2x^+4y^2x^−5y^
令
y
^
=
u
x
^
\hat y=u\hat x
y^=ux^,得到
u
+
x
^
d
u
d
x
^
=
2
−
5
u
2
+
4
u
u+\hat x\frac{du}{d\hat x}=\frac{2-5u}{2+4u}
u+x^dx^du=2+4u2−5u
整理后得
∫
[
4
1
−
4
u
−
2
u
+
2
]
d
u
=
∫
3
d
x
^
x
^
\int[\frac{4}{1-4u}-\frac{2}{u+2}]du=\int \frac{3d\hat x}{\hat x}
∫[1−4u4−u+22]du=∫x^3dx^
从此解得
(
1
−
4
u
)
(
u
+
2
)
2
x
^
3
=
C
(1-4u)(u+2)^2\hat x^3=C
(1−4u)(u+2)2x^3=C
还原变量,便得方程的通解。