作者:禅与计算机程序设计艺术
1.简介
数据处理的本质
数据处理就是对海量的数据进行快速、准确地分析、过滤、转换,从而得到有用的信息。传统上数据处理系统都是基于离线模式,将所有数据集中存储在单台服务器上,然后按照批处理的方式进行处理。这种做法的效率很低,因为批量处理方式无法同时处理整个数据集。并且由于服务器资源的限制,并行处理能力较弱。为了提高处理速度,需要使用分布式框架或云平台。这些分布式系统可以根据数据源头的位置以及数据的分区情况进行分布式计算,并通过集群中的多个节点完成数据的处理工作。分布式系统比批处理更加灵活,可以在任意时间点、任意地点执行数据处理任务。但是分布式系统也存在诸多不足之处,如复杂性、可靠性、性能等。
Apache Flink 是什么?
Apache Flink 是一个开源的分布式计算框架,它能够处理实时数据流,具有高吞吐量、低延迟、容错性、状态管理等特点。Flink 以 Java 和 Scala 开发,支持了广泛的编程语言,包括 Java, Scala, Python, Go, C++, SQL。它还提供 DataStream API,允许开发人员像编写一般的 MapReduce 程序一样编写流处理程序。Flink 的运行依赖于 Apache Hadoop HDFS 或 Apache Kafka 作为底层数据存储。它提供了统一的处理模型,可以用于批处理(MapReduce)、交互式查询(SQL)、流处理(DataStream API),甚至是机器学习(FlinkML)。 Flink 通过使用基于物理时间的窗口机制以及状态一致性保障机制实现精确一次的数据处理。其性能超