Dropout: 深度学习中的原理和实践 The Next Big Thing in AI?

本文深入探讨了深度学习中的正则化技术,包括Dropout和权重衰减。Dropout通过随机关闭神经元来防止过拟合,而权重衰减(L2正则化)通过控制模型复杂度来避免过拟合。此外,还介绍了随机失活和集成学习方法如Bagging和Boosting,以提升模型的泛化能力。
摘要由CSDN通过智能技术生成

作者:禅与计算机程序设计艺术

1.简介

机器学习(ML)模型是现代计算机科学的一个重要组成部分,而深度学习(DL)模型则在近几年的热潮下获得了更加广泛的应用。深度学习模型通常可以处理庞大的、复杂的数据集并提取出有用的特征。然而,在训练深度学习模型时,模型参数过多可能会导致过拟合现象,从而影响模型的预测准确性。“dropout”正是为了解决这一问题而被提出的一种技术。它是指在深度学习模型中,随机扔掉一些神经元的输出,使得这些神经元不能参与后面的计算,从而降低网络对输入数据的依赖程度。通过这种方式,模型可以在一定程度上抵御过拟合现象,达到较高的预测精度。本文将会介绍“dropout”,及其在深度学习中的原理和实践。

2.基本概念术语说明

2.1 Dropout

Dropout 是深度学习领域里出现的一种新型神经网络层技术,它提出了一个新的方法,可以有效地防止过拟合。它的提出最初源于 Hinton 提出的论文 Improving neural networks by preventing co-adaptation of feature detectors [Hinton2012]。

Dropout 的基本想法是,为了减少模型对某些输入特征的

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值