作者:禅与计算机程序设计艺术
1.简介
数据分析(Data Analytics)是指从数据中提取有效信息、通过对数据的理解找出规律、建立模型并利用模型进行预测、评估模型的准确性和实用价值的一系列过程。许多行业都在从事数据分析工作,如金融、保险、零售、生物医疗等等。虽然不同行业的数据分析工具和方法千差万别,但总体上来说,其流程都可以分为以下7个步骤:
1.收集数据 - 从不同的渠道获取各种类型的数据,如数据库、日志文件、文本文件等等。
2.清洗数据 - 清理原始数据,删除脏数据、错误数据、无效数据等。
3.整合数据 - 将不同来源的数据集成到一起,形成统一的数据源。
4.转换数据 - 对数据进行转换处理,比如将文字数据转化为数字数据或者将日期数据转换为时间序列数据。
5.探索数据 - 通过数据可视化、分析结果发现模式和规律。
6.建模 - 使用机器学习算法或统计模型构建对数据进行分析的模型。
7.评估模型 - 测试模型的精度、稳定性和效率。
在实际应用中,数据分析工作者需要根据数据的特点、需求和规模选择适合的方法和工具,比如从多个维度分析数据、探索潜在关系并找到隐藏的信息。本文将介绍一些流行的数据分析工具及相应的功能,帮助读者更好的掌握数据分析技巧。
2.概念术语说明
本节介绍了本文所涉及到的一些基础概念和术语,帮助读者更好地理解本文