Top 10 Data Analysis Technologies and Tools

本文介绍了数据分析的关键概念,如数据仓库、数据湖、SQL和NoSQL技术,以及Hadoop框架。此外,文章深入探讨了Spark分布式计算框架的原理和操作步骤,包括创建SparkSession和配置properties文件。同时,文章还涵盖了多种分类算法,如朴素贝叶斯、K近邻、决策树、支持向量机和神经网络。通过具体的代码实例,展示了如何利用Spark实现电影推荐系统、数据清洗和异常检测与推荐。
摘要由CSDN通过智能技术生成

作者:禅与计算机程序设计艺术

1.简介

数据分析(Data Analytics)是指从数据中提取有效信息、通过对数据的理解找出规律、建立模型并利用模型进行预测、评估模型的准确性和实用价值的一系列过程。许多行业都在从事数据分析工作,如金融、保险、零售、生物医疗等等。虽然不同行业的数据分析工具和方法千差万别,但总体上来说,其流程都可以分为以下7个步骤:
1.收集数据 - 从不同的渠道获取各种类型的数据,如数据库、日志文件、文本文件等等。
2.清洗数据 - 清理原始数据,删除脏数据、错误数据、无效数据等。
3.整合数据 - 将不同来源的数据集成到一起,形成统一的数据源。
4.转换数据 - 对数据进行转换处理,比如将文字数据转化为数字数据或者将日期数据转换为时间序列数据。
5.探索数据 - 通过数据可视化、分析结果发现模式和规律。
6.建模 - 使用机器学习算法或统计模型构建对数据进行分析的模型。
7.评估模型 - 测试模型的精度、稳定性和效率。
在实际应用中,数据分析工作者需要根据数据的特点、需求和规模选择适合的方法和工具,比如从多个维度分析数据、探索潜在关系并找到隐藏的信息。本文将介绍一些流行的数据分析工具及相应的功能,帮助读者更好的掌握数据分析技巧。

2.概念术语说明

本节介绍了本文所涉及到的一些基础概念和术语,帮助读者更好地理解本文

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

光剑书架上的书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值