作者:禅与计算机程序设计艺术
1.简介
CAM即分类激活映射(Class Activation Mapping),是一种用于分析卷积神经网络(CNN)中间特征映射(feature map)中每个通道的重要程度的方法。它通过反向传播的方式,在神经网络输出的预测类别上对输入图片进行梯度运算,最终生成各个通道的重要性热力图(heat map)。与其他可视化方法相比,CAM可以更清晰地看到网络内部不同层的特征图。
一般来说,CNN模型在训练阶段会通过多种loss函数来优化模型参数,并尝试拟合每一个训练样本的真实标签。在测试阶段,网络针对输入数据做出预测,并根据预测结果计算损失值作为评估标准。但是,由于模型结构复杂、参数多且不稳定,很难掌握每一步的输出信息。而CAM是另一种有效的方式来获取网络内部的特征和过程信息。CAM可以帮助我们直观地理解网络为什么对某些类别如此激励,并进一步挖掘其潜在机理。
2.基本概念术语说明
首先,我们需要明白一些基本的概念和术语:
-
CNN 模型:Convolutional Neural Network(卷积神经网络)。CNN 是深度学习领域中的一个著名模型,它由多个卷积层和池化层组成,可以自动提取图像特征。
-
激活函数:Activation Function。激活函数又称为