作者:禅与计算机程序设计艺术
1.简介
深度学习(Deep Learning)是近几年极具革命性的机器学习技术,它主要解决的是计算机视觉、自然语言处理等领域难以解决的问题。深度学习在多层感知机(Multilayer Perceptron, MLP)、卷积神经网络(Convolutional Neural Networks, CNN)、循环神经网络(Recurrent Neural Networks, RNN)等基础模型上构建而成,并通过迭代学习达到高效的识别和分类效果。深度学习的使用促使越来越多的公司和研究者开始涉足这方面的研究,不断尝试创新,突破局限,提升模型性能,实现更好的服务。
本文将从以下几个方面讨论深度学习相关的常用技术和模型,包括:
- 深度学习框架——TensorFlow、PyTorch等
- 深度学习基础模型——MLP、CNN、RNN
- 数据增强技术——ImageNet上的数据增强方法
- 优化算法——SGD、Momentum、Adam等
- 模型蒸馏技术——用于解决模型之间的不平衡问题
- 激活函数——Sigmoid、ReLU、Leaky ReLU、ELU、Tanh等
2. 深度学习框架
深度学习框架(Deep Learning Frameworks)通常指代开源且具有一定功能的深度