【自然语言处理】Transformer模型原理和PyTorch实现【文本生成】

3607 篇文章 3 订阅 ¥39.90 ¥99.00
3425 篇文章 239 订阅 ¥59.90 ¥99.00
本文介绍了Transformer模型在自然语言生成任务中的应用,详细讲解了Transformer的模型架构,包括Encoder的多头注意力机制和Embedding层,以及Decoder的策略。文章还提供了PyTorch实现Transformer的步骤,包括环境配置、数据处理、模型创建、训练和预测。
摘要由CSDN通过智能技术生成

作者:禅与计算机程序设计艺术

1.简介

自然语言生成(Natural Language Generation)是NLP领域的一个重要任务。传统的序列到序列学习方法对大规模语料库的训练效率低下、对长距离关系建模能力不足等诸多问题都显得束手无策。因此,Transformer模型应运而生,它利用了注意力机制、编码器-解码器结构及位置编码技术来提升生成质量。本文将从原理和实践两个方面探讨Transformer模型的一些特性、架构、参数配置以及PyTorch的具体实现。

2.Transformer模型

2.1 模型概述

Transformer模型是Google于2017年提出的最新优秀的自然语言理解模型,它在很多NLP任务上都取得了很好的效果,并已广泛应用于各个领域。相比于之前的RNN、LSTM等模型,Transformer在以下几个方面取得了巨大的突破:

  1. 轻量级、高效:Transformer模型的计算量小于循环神经网络模型,且计算复杂度仅为 O (
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值