作者:禅与计算机程序设计艺术
1.背景介绍
Hyperparameter tuning (HPT) 是机器学习领域中非常重要的一环。它可以用于解决模型的过拟合、降低泛化误差等问题。一般来说,人工设计各种超参数组合并进行优化可以得到比较好的结果,但耗时长、计算资源高且容易错失良机。因此,自动化的超参数调优方法成为研究热点。
HPT 通过在模型训练前对超参数进行设置来控制模型的训练过程,从而提高模型的准确率和效率。超参数的选择往往直接影响最终的模型性能。当模型训练数据量不足或模型复杂度较高时,可以通过调整超参数来改进模型效果。HPT 的目的就是找到最佳的超参数配置,使得模型在训练集上表现最好,并在测试集上达到很好的效果。
HPT 主要包括两个步骤:
- 超参数空间搜索(hyperparameter search):通过设置多个候选超参数组合,然后用训练集评估各个超参数组合的效果,选择其中效果最好的作为最终超参数组合。
- 超参数调优(hyperparameter optimization):根据已有的超参数配置,用优化算法(如遗传算法、贝叶斯优化、模拟退火算法、随机森林算法等)寻找一个更优的超参数配置。