Python入门实战:Python的数据可视化

5697 篇文章 115 订阅 ¥39.90 ¥99.00
5063 篇文章 46 订阅 ¥39.90 ¥99.00
本文详细介绍了Python数据可视化的入门实战,重点探讨了Matplotlib、Seaborn和Plotly三大库的使用,包括折线图、饼图、柱状图、散点图等常见图表的创建。通过实例代码和详细解释,帮助读者掌握Python数据可视化的基础与技巧。
摘要由CSDN通过智能技术生成

1.背景介绍

数据可视化(Data Visualization)是通过数据的视觉表现形式将复杂的数据信息转化为易于理解、分析的图形或图像的过程。广义上来说,数据可视化也包括数据处理及其结果的呈现,但通常指计算机屏幕上的可视化。由于人类的注意力往往集中在视觉上,数据可视化能够将数据转化成可以直观地看出的形式,提高数据分析的效率。而本文介绍的Python数据可视化主要基于Matplotlib、Seaborn、Plotly等第三方库实现。

数据可视化一般分为两类:一是静态数据可视化,如图表,一张图片就是一个静态的数据可视化;二是动态数据可视ization,即动画或交互式可视化。传统的数据可视化工具如Excel、Tableau、Power BI等提供静态的展示功能,但是对于具有时序性的、动态的数据,传统工具并不能很好地满足需求。因此,除了传统的静态数据可视化外,Python还提供了一些交互式的数据可视化库,例如plotly、dash等。

本文介绍的Python数据可视化库有:Matplotlib、Seaborn、Plotly。Matplotlib是一个著名的开源数据可视化库,其支持常用的数据可视化类型,如折线图、散点图、柱状图等,而且提供了简洁的接口和自定义样式。Seaborn是在Matplotlib的基础上进行了优化,使得其更加美观,Seaborn提供更加丰富的统计图表类型,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

光剑书架上的书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值