1. 背景介绍
1.1 采样方法的重要性
在计算机科学和统计学领域,采样方法是一种非常重要的技术,它可以帮助我们从一个复杂的概率分布中抽取样本。这些样本可以用于估计分布的参数、进行模型选择、优化算法等。在机器学习、计算机视觉、自然语言处理等领域,采样方法都有着广泛的应用。
1.2 拒绝采样的基本思想
拒绝采样(Rejection Sampling)是一种经典的采样方法,它的基本思想是:从一个易于采样的分布(称为建议分布,Proposal Distribution)中抽取样本,然后根据目标分布和建议分布的比值来决定是否接受这个样本。拒绝采样的优点是原理简单,容易实现;缺点是采样效率可能较低,特别是在高维空间中。
1.3 拒绝采样微调(RSFT)的动机
拒绝采样微调(Rejection Sampling Fine-Tuning,RSFT)是一种改进的拒绝采样方法,它的目的是在保持拒绝采样原理简单的优点的同时,提高采样效率。RSFT的核心思想是:通过对建议分布进行微调,使其更接近目标分布,从而提高采样效率。
2. 核心概念与联系
2.1 建议分布(Proposal Distribution)
建议分布是一个易于采样的分布,通常选择均匀分布或正态分布。建议分布的选择对拒绝采样的效率有很大影响,一个好的建议分布应该尽可能地接近目标分布。
2.2 目标分布(Target Distribution)
目标分布是我们希望从中抽取样本的分布。在实际应用中,目标分布通常是一个复杂的概率分布,很难直接从中采样。
2.3 拒绝采样的接受概率
拒绝采样的接受概率是一个关键概念,它决定了采样效率。接受概率的计算公式为:
$$ \alpha(x) = \frac{p(x)}{Mq(x)} $$
其中