1. 背景介绍
1.1 人工智能的跨模态趋势
近年来,人工智能领域取得了巨大的进步,尤其是在计算机视觉、自然语言处理等单一模态领域。然而,现实世界中的信息往往以多种模态的形式存在,例如图像、文本、语音等。为了更好地理解和处理这些信息,人工智能需要具备跨模态的能力,即能够理解和关联不同模态之间的信息。
1.2 Transformer模型的兴起
Transformer模型是一种基于自注意力机制的神经网络架构,最初应用于自然语言处理领域,并在机器翻译等任务中取得了显著的成果。由于其强大的特征提取和序列建模能力,Transformer模型逐渐被应用于其他领域,如计算机视觉、语音识别等。
1.3 跨模态应用的挑战
将Transformer模型应用于跨模态任务面临着一些挑战:
- 模态差异: 不同模态的数据具有不同的特征和结构,例如图像数据是二维的,而文本数据是一维的。
- 语义鸿沟: 不同模态之间存在着语义鸿沟,例如一张图片和一段描述图片的文本之间可能存在着微妙的语义差异。
- 模型复杂度: 跨模态模型通常需要处理大量的数据和复杂的模型结构,这带来了计算和存储方面的挑战。<