LLM多任务学习:泛化能力的终极挑战

本文探讨了大型语言模型(LLM)的多任务学习,旨在通过多任务学习提升LLM的泛化能力。文章介绍了人工智能发展、LLM的兴起和多任务学习的重要性,并详细阐述了多任务学习的定义、与迁移学习的关系,以及在LLM中的应用。还讲解了硬参数共享和软参数共享等核心算法,并提供了项目实践的代码示例和实际应用场景,包括通用语言理解、多语言多任务模型等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LLM多任务学习:泛化能力的终极挑战

1.背景介绍

1.1 人工智能的发展历程

人工智能(Artificial Intelligence, AI)是当代科技发展的前沿领域,自20世纪50年代诞生以来,已经取得了长足的进步。从早期的专家系统、机器学习算法,到近年来的深度学习和大型语言模型(Large Language Model, LLM),AI技术不断突破,在多个领域展现出超乎想象的能力。

1.2 大型语言模型(LLM)的兴起

近年来,benefiting from海量数据、强大算力和创新模型,LLM取得了突破性进展,在自然语言处理、问答系统、文本生成等任务上表现出色。代表性模型如GPT-3、PaLM、ChatGPT等,通过对大规模语料的学习,掌握了丰富的知识,展现出通用的语言理解和生成能力。

1.3 多任务学习的重要性

然而,现有LLM在特定任务上虽然表现优异,但在面对新的任务时,往往需要大量新的标注数据和从头训练,泛化能力有限。为解决这一瓶颈,多任务学习(Multi-Task Learning, MTL)应运而生,旨在让模型在同时学习多个任务的过程中,提高任务间知识迁移和泛化能力。

本文将深入探讨LLM多任务学习的最新进展、挑战和未来发展趋势,为读者提供全面的技术视角。

2.核心概念与联系

2.1 多任务学习的定义

多任务学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值