1. 背景介绍
1.1 人工智能的黑箱问题
人工智能系统,尤其是深度学习模型,被视为"黑箱"。这些复杂的模型能够从大量数据中学习并产生准确的预测,但其内部工作机制却难以解释和理解。这种"黑箱"特性引发了广泛关注,因为它可能会导致模型缺乏透明度、可解释性和可信度。
1.2 可解释性的重要性
可解释性对于人工智能系统的应用至关重要,尤其是在一些高风险领域,如医疗、金融和司法等。缺乏可解释性可能会导致模型产生不公平或有偏差的决策,从而对个人和社会产生负面影响。此外,可解释性还有助于提高模型的可靠性和可信度,促进人工智能系统的广泛采用。
1.3 预训练模型的兴起
近年来,预训练模型(Pre-trained Models)在自然语言处理(NLP)和计算机视觉(CV)等领域取得了巨大成功。这些模型通过在大规模数据集上进行预训练,获得了强大的表示能力,并可以通过微调(fine-tuning)应用于各种下游任务。然而,预训练模型的可解释性仍然是一个挑战,因为它们的内部机制复杂且难以理解。
2. 核心概念与联系
2.1 可解释性的定义
可解释性是指人工智能系统能够以人类可理解的方式解释其决策和预测的能力。它包括以下几个方面:
- 透明度(Transparency): 模型的内部工作机制和决策过程对人类可见和可理解。