1. 背景介绍
1.1 人工智能的复兴与挑战
近年来,随着计算能力的提升和数据量的爆炸式增长,人工智能(AI)迎来了第三次发展浪潮。深度学习的兴起,使得AI在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,传统的深度学习模型通常专注于单一任务,需要大量的标注数据进行训练,泛化能力有限。为了解决这些问题,研究人员开始探索能够同时学习多个任务的多任务学习(Multi-task Learning,MTL)方法。
1.2 多任务学习:一种更通用的学习范式
多任务学习是一种机器学习范式,旨在通过学习多个相关任务的共同特征表示,来提升模型的泛化能力和学习效率。与单任务学习相比,多任务学习具有以下优势:
- 数据效率更高: 多任务学习可以利用不同任务之间的数据关联性,减少对每个任务所需标注数据的依赖。
- 模型泛化能力更强: 学习多个任务的共同特征表示可以帮助模型更好地理解数据的本质特征,从而提升其在未见任务上的泛化能力。
- 训练效率更高: 多个任务共享模型参数和计算资源,可以加速模型的训练过程。