自注意力机制在扩散模型中的魔力
作者:禅与计算机程序设计艺术
1. 背景介绍
1.1. 深度生成模型的兴起
近年来,深度学习技术在各个领域都取得了令人瞩目的成就,尤其是在计算机视觉和自然语言处理领域。其中,深度生成模型作为一种强大的无监督学习方法,在图像生成、文本创作、语音合成等方面展现出巨大的潜力。从生成对抗网络 (GANs) 到变分自编码器 (VAEs),再到近期的扩散模型 (Diffusion Models),深度生成模型不断推陈出新,刷新着人们对人工智能创造力的认知。
1.2. 扩散模型的独特魅力
扩散模型作为一种新兴的深度生成模型,凭借其优异的生成质量和可控性,迅速成为研究热点。不同于GANs通过对抗训练的方式学习数据分布,扩散模型采用了一种更加优雅的思路:先通过一个前向扩散过程逐步添加噪声,将数据分布转换为一个易于处理的先验分布(通常是标准高斯分布),然后再训练一个神经网络学习逆向过程,将噪声逐步去除,从而实现从噪声到真实数据的生成。这种生成过程类似于物理中的扩散现象,因此得名“扩散模型”。