随机森林(Random Forests) - 原理与代码实例讲解
1.背景介绍
随机森林(Random Forests)是一种基于集成学习(Ensemble Learning)方法的监督学习算法,它通过构建多个决策树,并将它们的预测结果进行组合,从而获得比单个决策树更好的预测性能。随机森林在分类和回归问题上都有出色的表现,因此被广泛应用于各种领域,如金融风险评估、图像识别、基因组学等。
随机森林的核心思想是通过引入随机性来提高模型的泛化能力,降低过拟合风险。具体来说,在构建每个决策树时,随机森林会从原始训练数据中随机抽取一部分样本(有放回抽样),并在每个节点上随机选取一部分特征进行分裂。这种随机性可以确保每棵决策树之间具有较大的差异性,从而降低了它们之间的相关性。当将这些"差异性"决策树的预测结果进行组合时,就可以有效地减小单个决策树的方差,提高整体预测的准确性和稳定性。
2.核心概念与联系
2.1 决策树(Decision Tree)
决策树是随机森林的基础组件,它是一种树形结构的监督学习算法,通过对特征进行递归分裂来构建一个决策模型。决策树的优点是可解释性强、计算效率高,但缺点是容易过拟合,且对数据的微小变化敏感。
2.2 集成学习(Ensemble Learning)
集成学习是将多个弱学习器(如决策树)组合起来,形成一个强大的预测模型。常见的集成学习方法包括Bagging