图卷积网络(GCN)原理与代码实战案例讲解

1. 背景介绍

在机器学习领域,图数据是一种常见的数据类型,例如社交网络、推荐系统、生物信息学等领域都可以用图来表示数据。传统的卷积神经网络(CNN)和循环神经网络(RNN)等模型只能处理规则化的数据,而对于图数据,传统的神经网络模型并不适用。因此,图卷积网络(GCN)应运而生。

GCN是一种基于图结构的卷积神经网络,它可以处理非规则化的图数据,具有很好的性能和可解释性。GCN已经在社交网络、推荐系统、生物信息学等领域得到了广泛的应用。

2. 核心概念与联系

2.1 图(Graph)

图是由节点(node)和边(edge)组成的一种数据结构,通常用$G=(V,E)$表示,其中$V$表示节点集合,$E$表示边集合。节点可以表示实体,边可以表示实体之间的关系。

2.2 邻接矩阵(Adjacency Matrix)

邻接矩阵是一种表示图的方式,它是一个$N \times N$的矩阵,其中$N$表示节点的数量。如果节点$i$和节点$j$之间有边相连,则邻接矩阵的第$i$行第$j$列和第$j$行第$i$列的值为1,否则为0。

2.3 卷积(Convolution)

卷积是一种常见的信号处理方法,它可以提取信号的局部特征。在图卷积网络中,卷积操作被定义为对节点的邻居节点特征的加权求和,权重由邻接矩阵决定。

2.4 特征表示(Feature Repre

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值