Pontryagin对偶与代数量子超群:乘子代数

Pontryagin对偶与代数量子超群:乘子代数

1.背景介绍

在现代数学和计算机科学中,代数量子超群和Pontryagin对偶是两个重要的概念。代数量子超群是量子群的推广,具有丰富的代数结构和对称性。而Pontryagin对偶则是拓扑群论中的一个基本工具,用于研究局部紧群的对偶性。乘子代数作为这两个领域的交汇点,提供了一种强有力的工具来研究复杂的代数结构和对称性。

2.核心概念与联系

2.1 代数量子超群

代数量子超群是量子群的推广,具有更复杂的代数结构。它们在量子场论、统计力学和表示论中有广泛的应用。代数量子超群的定义依赖于Hopf代数的概念,其基本结构包括共代数、余积和对偶性。

2.2 Pontryagin对偶

Pontryagin对偶是拓扑群论中的一个基本概念,用于研究局部紧群的对偶性。对于一个局部紧群 $G$,其Pontryagin对偶群 $G^*$ 是由所有连续的群同态 $G \to \mathbb{T}$ 组成,其中 $\mathbb{T}$ 是单位圆群。Pontryagin对偶在傅里叶分析和调和分析中有重要应用。

2.3 乘子代数

乘子代数是C-代数理论中的一个重要概念,用于研究非紧算子的代数结构。乘子代数 $M(A)$ 是一个包含给定C-代数 $A$ 的最大C*-代数,使得 $A$ 在 $M(A)$ 中是理想。乘子代数在研究代数量子超群和Pontryagin对偶的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值