Pontryagin对偶与代数量子超群:乘子代数
1.背景介绍
在现代数学和计算机科学中,代数量子超群和Pontryagin对偶是两个重要的概念。代数量子超群是量子群的推广,具有丰富的代数结构和对称性。而Pontryagin对偶则是拓扑群论中的一个基本工具,用于研究局部紧群的对偶性。乘子代数作为这两个领域的交汇点,提供了一种强有力的工具来研究复杂的代数结构和对称性。
2.核心概念与联系
2.1 代数量子超群
代数量子超群是量子群的推广,具有更复杂的代数结构。它们在量子场论、统计力学和表示论中有广泛的应用。代数量子超群的定义依赖于Hopf代数的概念,其基本结构包括共代数、余积和对偶性。
2.2 Pontryagin对偶
Pontryagin对偶是拓扑群论中的一个基本概念,用于研究局部紧群的对偶性。对于一个局部紧群 $G$,其Pontryagin对偶群 $G^*$ 是由所有连续的群同态 $G \to \mathbb{T}$ 组成,其中 $\mathbb{T}$ 是单位圆群。Pontryagin对偶在傅里叶分析和调和分析中有重要应用。
2.3 乘子代数
乘子代数是C-代数理论中的一个重要概念,用于研究非紧算子的代数结构。乘子代数 $M(A)$ 是一个包含给定C-代数 $A$ 的最大C*-代数,使得 $A$ 在 $M(A)$ 中是理想。乘子代数在研究代数量子超群和Pontryagin对偶的

订阅专栏 解锁全文
699

被折叠的 条评论
为什么被折叠?



