词嵌入在推荐系统中的应用
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming / TextGenWebUILLM
文章目录
1. 背景介绍
1.1 问题的由来
在信息爆炸的时代,用户面临大量的选择和海量的数据,这导致了获取个性化信息的挑战。推荐系统作为解决这一问题的重要手段之一,旨在根据用户的偏好、行为历史以及上下文环境,为用户提供定制化的内容或商品建议。然而,传统的推荐系统往往依赖于基于规则的方法或简单的统计方法,缺乏对语义理解的能力,无法有效地处理文本数据中的深层次含义。
1.2 研究现状
随着自然语言处理(NLP)和机器学习技术的进步,研究者开始探索如何利用现代语言模型如BERT、GPT等生成的高质量词嵌入来改进推荐系统的性能。这些词嵌入不仅捕捉到了词汇级别的特征,还能体现单词之间的语义关系,从而提供了更丰富的表示空间,有助于提升推荐系统的准确度和多样性。