一切皆是映射:BERT模型原理及其在文本理解中的应用
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:BERT, Transformer, 自注意力机制, 语义表示, 文本分类, 句子对匹配
1. 背景介绍
1.1 问题的由来
随着互联网信息爆炸式的增长,自然语言处理(NLP)成为了计算机科学领域的一个重要分支。在海量数据中提取有用信息、理解和生成人类语言是当今社会面临的重大挑战之一。传统的基于规则的方法无法适应高度动态变化的语言表达,而深度学习方法在大规模数据驱动下展现出强大的潜力。
1.2 研究现状
近年来,深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)以及它们的变种,在诸如机器翻译、情感分析、问答系统等多个NLP任务上取得了显著进展。然而,这些模型往往需要大量的手动特征工程,并且对输入序列的顺序敏感,这限制了它们在某些任务上的表现。
1.3 研究意义
为了克服上述局限性,研究人员提出了Transformer模型,这一创新使得NLP领域迎来了革命性的突破。Transformer通过引入自注意