大语言模型应用指南:为什么需要外部工具
1. 背景介绍
1.1 问题的由来
随着大语言模型(Large Language Model, LLM)的兴起,它们以其令人惊叹的能力和广泛的应用场景吸引了全球科技界的广泛关注。这些模型通常基于深度学习技术,能够生成人类可读的文本,回答问题、创作故事、编写代码等等。尽管LLM展现出强大的能力,但它们仍面临一些局限,如缺乏特定领域的知识、对上下文理解的依赖性以及生成文本的不一致性等。为了克服这些问题,引入外部工具成为提升LLM应用效果的关键策略之一。
1.2 研究现状
目前,研究者们正探索多种方式来增强LLM的功能和适用性。外部工具的整合主要集中在以下几个方面:
- 知识整合:通过集成外部知识库,如维基百科、科学数据库等,为LLM提供更丰富的信息来源,增强其回答专业问题的能力。
- 上下文补全:利用外部数据源来补充或修正LLM对特定场景的理解,提高答案的准确性和相关性。
- 性能优化:引入特定领域的模型或微调现有模型以适应特定任务需求,提升LLM在特定任务上的表现。
- 增强可控性和可解释性:通过外部工具提供更详细的解释和反馈,帮助用户理解LLM决策过程,增强用户的信任感。
1.3 研究意义
外部工具对于大语言模型的应用具有重大意

订阅专栏 解锁全文
1192

被折叠的 条评论
为什么被折叠?



