强化学习Reinforcement Learning研究中的不确定性建模探究
关键词:
- 强化学习
- 不确定性建模
- 贝叶斯方法
- 模型预测控制
- 博弈论
- 自适应控制
1. 背景介绍
1.1 问题的由来
强化学习(Reinforcement Learning, RL)是机器学习的一个分支,主要研究智能体如何在环境中学习行为策略以最大化累积奖励。随着深度学习技术的发展,强化学习取得了显著进展,尤其是在游戏、机器人控制、自动驾驶等领域。然而,强化学习面临的主要挑战之一是如何有效地处理环境中的不确定性,特别是在动态、不可预测或者高度复杂的环境中。这包括环境状态的不完全观测、动作后果的随机性以及策略选择的不确定性。因此,引入不确定性建模成为强化学习研究的关键方向。
1.2 研究现状
近年来,研究人员提出了多种方法来应对强化学习中的不确定性。这些方法包括但不限于贝叶斯方法、模型预测控制、基于概率的决策理论以及集成学习。其中,贝叶斯方法通过概率分布来量化和管理不确定性,成为强化学习中不确定性建模的一种流行框架。这种方法允许智能体在决策过程中考虑对状态、动作和奖励的先验和后验概率估计,从