强化学习Reinforcement Learning研究中的不确定性建模探究

强化学习Reinforcement Learning研究中的不确定性建模探究

关键词:

  • 强化学习
  • 不确定性建模
  • 贝叶斯方法
  • 模型预测控制
  • 博弈论
  • 自适应控制

1. 背景介绍

1.1 问题的由来

强化学习(Reinforcement Learning, RL)是机器学习的一个分支,主要研究智能体如何在环境中学习行为策略以最大化累积奖励。随着深度学习技术的发展,强化学习取得了显著进展,尤其是在游戏、机器人控制、自动驾驶等领域。然而,强化学习面临的主要挑战之一是如何有效地处理环境中的不确定性,特别是在动态、不可预测或者高度复杂的环境中。这包括环境状态的不完全观测、动作后果的随机性以及策略选择的不确定性。因此,引入不确定性建模成为强化学习研究的关键方向。

1.2 研究现状

近年来,研究人员提出了多种方法来应对强化学习中的不确定性。这些方法包括但不限于贝叶斯方法、模型预测控制、基于概率的决策理论以及集成学习。其中,贝叶斯方法通过概率分布来量化和管理不确定性,成为强化学习中不确定性建模的一种流行框架。这种方法允许智能体在决策过程中考虑对状态、动作和奖励的先验和后验概率估计,从

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值