迁移学习概述
迁移学习(Transfer Learning)是机器学习中的一个重要分支,通过利用已在不同任务上训练好的模型的知识,来提高新任务的学习效率。本文将详细探讨迁移学习的背景与意义、发展历程、理论框架以及在不同领域的应用,旨在帮助读者全面理解迁移学习的原理与应用。
1.1 迁移学习的基本概念
迁移学习的定义
迁移学习(Transfer Learning)是指将一个任务中学习到的知识应用到另一个任务中去的过程。具体来说,就是在源域(Source Domain)上已经训练好的模型,通过一定的方法迁移到目标域(Target Domain)上进行任务学习。
- 源域:已经拥有大量标注数据且已经通过训练获得一定性能的领域。
- 目标域:相对于源域而言,数据量较少,标注困难或者数据不存在的领域。
迁移学习与传统机器学习的关系
传统机器学习通常要求在每个任务上重新训练模型,需要大量标注数据。而迁移学习则不同,它利用已有模型的知识,大大减少了重新训练模型所需的数据量,提高了学习效率。