迁移学习(Transfer Learning) 原理与代码实例讲解

迁移学习概述

迁移学习(Transfer Learning)是机器学习中的一个重要分支,通过利用已在不同任务上训练好的模型的知识,来提高新任务的学习效率。本文将详细探讨迁移学习的背景与意义、发展历程、理论框架以及在不同领域的应用,旨在帮助读者全面理解迁移学习的原理与应用。

1.1 迁移学习的基本概念

迁移学习的定义

迁移学习(Transfer Learning)是指将一个任务中学习到的知识应用到另一个任务中去的过程。具体来说,就是在源域(Source Domain)上已经训练好的模型,通过一定的方法迁移到目标域(Target Domain)上进行任务学习。

  • 源域:已经拥有大量标注数据且已经通过训练获得一定性能的领域。
  • 目标域:相对于源域而言,数据量较少,标注困难或者数据不存在的领域。
迁移学习与传统机器学习的关系

传统机器学习通常要求在每个任务上重新训练模型,需要大量标注数据。而迁移学习则不同,它利用已有模型的知识,大大减少了重新训练模型所需的数据量,提高了学习效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值