第1章:大模型与对话系统的背景介绍
1.1 大模型的基本概念
问题背景
在过去的几十年中,人工智能(AI)技术经历了飞速的发展。从早期的规则系统和简单逻辑推理,到基于统计学习的方法,再到如今的高度参数化的大模型(Large Models),人工智能的研究与应用已经取得了显著的成果。随着计算能力的提升和海量数据资源的积累,大模型在自然语言处理、计算机视觉、语音识别等领域展现出了强大的潜力。
然而,随着大模型的应用场景日益复杂,如何在对话系统中保持一致性和连贯性成为了一个亟待解决的问题。一致性是指对话系统能够在多次交互中保持一致的信息和逻辑,而连贯性则是指对话系统能够在长时间内保持话题和上下文的连贯。在现实应用中,用户对对话系统的期望不仅仅是回答问题,更希望获得一个连贯、自然的交互体验。
问题描述
对话系统的挑战主要体现在以下几个方面:
- 上下文理解:对话系统需要理解用户在对话中的意图、情感、背景信息等,以便给出合适的回应。
- 一致性与连贯性:对话系统需要在长时间内保持一致性和连贯性,避免出现逻辑矛盾或者话题跳跃。
- 多模