基于知识图谱的多源异构数据推理融合

基于知识图谱的多源异构数据推理融合

关键词:知识图谱、多源异构数据、数据推理、数据融合、语义理解

摘要:本文聚焦于基于知识图谱的多源异构数据推理融合技术。随着信息技术的飞速发展,多源异构数据大量涌现,如何有效处理和利用这些数据成为关键问题。知识图谱作为一种强大的语义网络,为多源异构数据的推理融合提供了有力的工具。文章详细介绍了该技术的背景、核心概念、算法原理、数学模型,通过实际项目案例展示了其具体实现过程,探讨了实际应用场景,推荐了相关工具和资源,并对未来发展趋势与挑战进行了总结,旨在为相关领域的研究和实践提供全面而深入的参考。

1. 背景介绍

1.1 目的和范围

在当今数字化时代,数据呈现出爆炸式增长,且来源广泛、格式多样,包括文本、图像、音频、视频等不同类型的数据,以及来自不同系统、不同组织的结构化、半结构化和非结构化数据。这些多源异构数据蕴含着丰富的信息,但由于其复杂性,难以直接进行分析和利用。基于知识图谱的多源异构数据推理融合技术的目的在于整合这些多源异构数据,挖掘数据之间的潜在关系,通过推理机制获取新的知识,从而为决策支持、智能问答、信息检索等应用提供更全面、准确的信息。

转自CCF:https://dl.ccf.org.cn/lecture/lectureDetail?id=4663480272078848。 张勇,剑桥大学博士后。 摘要:健康医疗大数据是健康医疗活动的产物,同时也是进行健康医疗业务优化和辅助决策的基础。健康医疗大数据分散在多个主体管理的多个系统中,所以在应用健康医疗大数据的时候往往需要先进行数据釉合。然而由于生成数据的系统所采用的标准或规范不同,不同来源的数据之间经常存在数据不一致的情况,同时由于应用水平等问题,数据的质量也存在较大问题。数据不一 致和数据质量等问题大大阻碍了数据融合的效率和效果。知识图谱作为作为一种灵活的数据模型,通过一张图来集成所有相关的数据,同时利用对齐等技术来解决数据中存在的问题。本报告将从健康医疗大数据融合数据模型、过程、工具和应用的角度来介绍如何应用知识图谱来进行健康医疗大数据融合。我们把健康医疗知识图谱分为概念图谱和实例图谱,定义了各 自的数据模型,然后分别介绍了各自的建立过程,以及两者之间如何建立关联。我们提出了“ 医在回路 ”的概念,对医生在构建健康领域知识图谱中的角色和职责进行了定义。基于这些数据模型,我们研发了健康知识图谱构建工具 HKGB 。该工具是一个易于扩展的、语言的、智能的知识图谱构建平台。基于该平台,我们构建了面向心血管疾病的知识图谱。最后本报告介绍了健康医疗知识图谱的应用情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值