CNN模型之AlexNet总结

背景

原理

  • 网络结构如如图所示:整个网络结构是由5个卷积层和3个全连接层组成的,深度总共8层

  • 正式引入relu激活函数
    • sigmoid与tanh有饱和区,Relu函数在x>0时导数一直是1,解决了激活函数的导数问题,有助于缓解梯度消失,也能在一定程度上解决梯度爆炸,从而加快训练速度
    • 无论是正向传播还是反向传播,计算量显著小于sigmoid和tanh

源码

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值