(一)伽马(γ )的概念
现实世界中几乎所有的CRT显示设备、摄影胶片和许多电子照相机的光电转换特性都是非线性的。这些非线性部件的输出与输入之间的关系(例如,电子摄像机的输出电压与场景中光强度的关系,CRT发射的光的强度与输入电压的关系)可以用一个幂函数来表示,它的一般形式是:
输出=(输入)γ
式中的γ (gamma)是幂函数的指数,它用来衡量非线性部件的转换特性。这种特性称为幂-律(power-law)转换特性。按照惯例,“输入”和“输出”都缩放到0~1之间。其中,0表示黑电平,1表示颜色分量的最高电平。对于特定的部件,人们可以度量它的输入与输出之间的函数关系,从而找出γ值。
实际的图像系统是由多个部件组成的,这些部件中可能会有几个非线性部件。如果所有部件都有幂函数的转换特性,那么整个系统的传递函数就是一个幂函数,它的指数γ 等于所有单个部件的g 的乘积。如果图像系统的整个γ =1,输出与输入就成线性关系。这就意味在重现图像中任何两个图像区域的强度之比率与原始场景的两个区域的强度之比率相同,这似乎是图像系统所追求的目标:真实地再现原始场景。但实际情况却不完全是这样。
当这种再生图像在“明亮环境”下,也就是在其他白色物体的亮度与图像中白色部分的亮度几乎相同的环境下观看时,γ =1的系统的确可使图像看起来像“原始场景”一样。但是某些图像有时在“黑暗环境”下观看所获得的效果会更好,放映电影和投影幻灯片就属于这种情况。在这种情况下,γ 值不是等于1而通常认为g »1.5,人的视角系统所看到的场景就好像是“原始场景”。根据这种观点,